Final Report

Impact and Life Cycle Assessment of New-Generation Wide-Base Tires in New Brunswick, Canada

Prepared By
Imad L. Al-Qadi
Izak Said
Jaime Hernandez
Seunggu Kang
University of Illinois at Urbana-Champaign

Research Report No. ICT 17-018

Illinois Center for Transportation
March 2017
Impact and Life-Cycle Assessment of New-Generation Wide-Base Tires in New Brunswick, Canada

The finite element method (FEM) analysis and life-cycle assessment were used to evaluate the impact of new-generation wide-base tires (NGWBT) and dual-tire assemblies (DTA) on the typical pavement sections of New Brunswick. Finite element analysis accounted for accurate material models and loading conditions (i.e., measured three-dimensional nonuniform tire–pavement contact loads). NGWBT created higher critical pavement responses, especially close to the surface such as shear strains in the asphalt concrete (AC). Maximum vertical strains in the subgrade were very similar for both tires. An analysis considering various NGWBT market penetrations showed a direct relationship between market penetration and additional damage resulting from the use of NGWBT. For a specific set of variables, NGWBT market penetration of 20% resulted in an 6% damage increase. Finally, life-cycle assessment (LCA) indicated that the greater the NGWBT market penetration, the higher the fuel savings and, hence, the fewer the emissions and greenhouse gases. It must be noted that the impact of steering wheel was not considered in this study, which usually causes the highest impact on pavements.

Key Words
- New-generation wide-base tires
- Dual-tire assembly
- Finite element analysis
- Life-cycle assessment
- Critical pavement responses
- Pavement damage
- Global warming potential
- Energy consumption

Distribution Statement
No restrictions.
ACKNOWLEDGMENT AND DISCLAIMER

The content of this report reflects the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The content does not necessarily reflect the official views or policies of the Illinois Center for Transportation. This report does not constitute a standard, specification, or regulation. The authors would like to acknowledge the financial support of the Department of Transportation and Infrastructure of New Brunswick, Canada.
EXECUTIVE SUMMARY

Wide-base tires (WBT) provide environmental benefits compared with conventional dual-tire assemblies (DTA), but research has consistently showed higher pavement responses and potential damage due to the use of WBT. Even though improvements were made with the introduction of new-generation wide-base tires (NGWBT) in 2000, NGWBT are still reported to be causing more damage to road infrastructure. However, a comprehensive evaluation of NGWBT and DTA considering the pavement damage and environmental benefits caused by each is not usually performed.

This study implements finite element analysis and life-cycle assessment (LCA) to perform a fair evaluation of the impact of NGWBT and DTA on the roads of New Brunswick. On one hand, the finite element method (FEM) analysis incorporates features usually omitted in conventional analysis of flexible pavements regarding material behavior (e.g., asphalt concrete viscoelasticity and granular material nonlinearity) and loading (e.g., moving load, three-dimensional nonuniform tire–pavement contact stresses). Critical pavement responses from the FE model were input in a transfer function to calculate pavement damage. Two variables, combined DTA-to-NGWBT ratio and combined damage ratio, were utilized to assess both tire technologies from the impact on the pavement structure. On the other hand, LCA provided global warming potential (GWP) and energy consumption considering variables such as NGWBT market penetration, traffic level, and seasonal effect.

The highest impact difference between NGWBT and DTA on pavement structure was found near the surface, which could be related to near-surface fatigue cracking, while there was no difference on the subgrade rutting. After combining the distresses considered, pavement damage increased as NGWBT market penetration became larger; for a case study with market penetration of 20%, damage increment due to NGWBT increased by 8%. It has to be noted that the impact of steering wheel was not considered in this study, which usually causes the highest impact on pavements. An analysis tool was developed to ease the evaluation of the pavement and calculate pavement damage under any traffic, as well as base and subbase material.

Three scenarios were considered in the LCA analysis: i) Scenario 1: NGWBT and DTA resulted in the same bottom-up fatigue cracking and rutting potential; ii) Scenario 2: tires resulted in different cracking but the same rutting potential; and iii) Scenario 3: the tires resulted in the same cracking but different rutting potential. In general, the higher the NGWBT market penetration, the higher the environmental benefits due to the reduction in fuel consumption.
CONTENTS

LIST OF FIGURES .. V
LIST OF TABLES ... VII
CHAPTER 1: INTRODUCTION ... 1
 1.1 BACKGROUND .. 1
 1.2 OBJECTIVE AND SCOPE .. 2
 1.3 OVERVIEW OF THE REPORT ... 3
CHAPTER 2: LITERATURE REVIEW ... 5
CHAPTER 3: FINITE ELEMENT MODEL ... 7
 3.1 MATERIAL PROPERTIES .. 7
 3.2 PAVEMENT TEMPERATURE ... 8
 3.3 LOAD CALCULATION AND DISTRIBUTION ... 8
 3.4 FINITE ELEMENT MODEL .. 10
CHAPTER 4: CRITICAL PAVEMENT RESPONSES AND PAVEMENT DAMAGE 11
 4.1 PAVEMENT STRUCTURES AND ANALYSIS MATRIX ... 11
 4.2 CRITICAL PAVEMENT RESPONSES .. 12
 4.3 COMBINED DAMAGE RATIO ... 15
 4.4 DAMAGE DUE TO TRAFFIC ... 17
 4.5 EXAMPLE OF DAMAGE DUE TO TRAFFIC ... 20
 4.6 DAMAGE ASSOCIATED WITH NGWBT .. 22
CHAPTER 5: LIFE-CYCLE ASSESSMENT .. 24
 5.1 METHODOLOGY ... 24
 5.2 RESULTS AND DISCUSSION .. 27
CHAPTER 6: PAVEMENT DAMAGE AND DESIGN TOOL .. 30
 6.1 NEW BRUNSWICK PAVEMENT DAMAGE SECTION (NBPDA) 30
 6.2 NEW BRUNSWICK PAVEMENT EVALUATION SECTION (NBPEV) 30
CHAPTER 7: SUMMARY ... 32
REFERENCES ... 33
APPENDIX A: CRITICAL PAVEMENT RESPONSES .. 1
 SECTION: WEAK BASE AND SUBBASE ... 1
 SECTION: MEDIUM BASE AND SUBBASE .. 2
 SECTION: MEDIUM BASE AND WEAK SUBBASE ... 3
 SECTION: MEDIUM BASE AND STRONG SUBBASE .. 4
APPENDIX B: TRANSFER FUNCTIONS ... 5
 FATIGUE CRACKING ... 5
 AC RUTTING .. 5
 SUBGRADE RUTTING .. 6
APPENDIX C: DAMAGE RATIOS .. 7
APPENDIX D: LCI INFORMATION FOR MATERIAL AND CONSTRUCTION STAGES 9
APPENDIX E: ASPHALT INSTITUTE TRANSFER FUNCTIONS ... 11
APPENDIX F: ROUGHNESS PROGRESSION ... 12
APPENDIX G: LCA RESULTS FOR DIFFERENT BASE/SUBBASE STRENGTHS 14
 ENERGY CONSUMPTION AND GWP FOR THE LOW TRAFFIC LEVEL 14
 ENERGY CONSUMPTION AND GWP FOR THE HIGH TRAFFIC LEVEL 16
APPENDIX H: SENSITIVITY ANALYSIS BASED ON PERCENTAGE AXLES EQUIPPED WITH NGWBT
.. 20
LIST OF FIGURES

Figure 1-1. General steps in the assessment of DTA and NGWBT impact. ... 3
Figure 3-1. Master curve of asphalt concrete. .. 7
Figure 3-2. Tested NGWBT (left) and tested DTA (right). ... 9
Figure 3-3. Variation of vertical, transverse, and longitudinal contact forces along contact length 9
Figure 3-4. Pavement model using ABAQUS (left) and geometric configuration in plan view (right) . 10
Figure 4-1. Sections considered in the analysis. ... 11

Figure 4-2: Tensile strain at the bottom of the AC layer ... 12
Figure 4-3. Tensile strain at bottom of AC for different temperatures, tire configuration, and strong base–subbase combination. .. 13
Figure 4-4: Vertical strain on top of the subgrade .. 13
Figure 4-5. Maximum vertical strain on top of the subgrade for different temperatures, tire configuration, and strong base–subbase. ... 14

Figure 4-6: Shear strain AC layer ... 14
Figure 4-7. Shear strain in AC layer for different temperatures, tire configuration, and strong base–subbase ... 15
Figure 4-8. Damage ratio for considered distresses and seasons and strong base and subbase 15
Figure 4-9. Cumulative damage ratio. ... 17
Figure 4-10: Effect of NGWBT market penetration on CDR. ... 22

Figure 4-11: Percentage increase in damage for various market penetrations 23
Figure 5-1. Generic life-cycle stages of pavement with defined system boundary. 24
Figure 5-2. A general methodology for analyzing the impact of NGWBT. .. 25
Figure 5-3. Energy consumption and GWP for Scenario 1 for (a) the low traffic level, and (b) the high traffic level (RR = rolling resistance induced by pavement roughness). 27
Figure 5-4. Energy consumption and GWP for Scenario 2 for the high traffic level. 28
Figure 5-5. Energy consumption and GWP for Scenario 3 for (a) the low traffic level, and (b) the high traffic level. ... 29

Figure 6-1. Tool interface. .. 30

Figure A- 1. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right). 1
Figure A- 2. Shear strain within AC layer. .. 1
Figure A- 3. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right). 2
Figure A- 4. Shear strain within AC layer. ... 2
Figure A- 5. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right). 3
Figure A- 6. Shear strain within AC layer. ... 3
Figure A- 7. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right). 4
Figure A- 8. Shear strain within AC layer. .. 4

Figure C- 1 Damage ratio for considered distresses, seasons, and weak base and subbase. 7
Figure C- 2. Damage ratio for considered distresses, seasons, and medium base and subbase. 7
Figure C- 3. Damage ratio for considered distresses, seasons, and medium base and weak subbase. .. 8
Figure C- 4. Damage ratio for considered distresses, seasons, and medium base and strong subbase.. 8
Figure F- 1. Comparison of IRI Progression for High and Low Traffic Levels Based on Scenario 3 SS (Starting Year = 2014). .. 12
Figure F- 2. Progression of IRI Progression for 0% and 100% NGWBT Market Penetration Based on Scenario 3 SS and the High Traffic Level (Starting Year = 2014). .. 12
Figure F- 3. Comparison of IRI Progression for 0% and 100% NGWBT Market Penetration Based on Scenario 3 SS and the Low Traffic Level (Starting Year = 2014). .. 13

Figure G- 1. Energy consumption and GWP for scenarios 1 & 2 WW based on the low traffic level. 14
Figure G- 2. Energy consumption and GWP for scenarios 1 & 2 MM based on the low traffic level. 14
Figure G- 3. Energy consumption and GWP for scenarios 1 & 2 MW based on the low traffic level. 15
Figure G- 4. Energy consumption and GWP for scenarios 1 & 2 MS based on the low traffic level. 15
Figure G- 5. Energy consumption and GWP for scenario 3 WW based on the low traffic level. 15
Figure G- 6. Energy consumption and GWP for scenario 3 MM Based on the low traffic level. 15
Figure G- 7. Energy consumption and GWP for scenario 3 MW Based on the low traffic level. 15
Figure G- 8. Energy consumption and GWP for scenario 3 MS Based on the low traffic level. 16
Figure G- 9. Energy consumption and GWP for scenario 1 WW Based on the high traffic level. 17
Figure G- 10. Energy consumption and GWP for scenario 1 MM Based on the high traffic level. 17
Figure G- 11. Energy consumption and GWP for scenario 1 MW Based on the high traffic level. 17
Figure G- 12. Energy consumption and GWP for scenario 1 MS Based on the high traffic level. 17
Figure G- 13. Energy consumption and GWP for scenario 2 WW Based on the high traffic level. 18
Figure G- 14. Energy consumption and GWP for scenario 2 MM Based on the high traffic level. 18
Figure G- 15. Energy Consumption and GWP for scenario 2 MW Based on the high traffic level. 18
Figure G- 16. Energy consumption and GWP for scenario 2 MS Based on the high traffic level. 18
Figure G- 17. Energy consumption and GWP for scenario 3 WW Based on the high traffic level. 19
Figure G- 18. Energy consumption and GWP for scenario 3 MM Based on the high traffic level. 19
Figure G- 19. Energy consumption and GWP for scenario 3 MW Based on the high traffic level. 19
Figure G- 20. Energy consumption and GWP for scenario 3 MS Based on the high traffic level. 19

Figure H- 1. Comparison of energy consumption for: 50% (left) and 100% (right) axle with NGWBT based on scenarios 1 & 2 SS and the Low Traffic Level. .. 20
Figure H- 2. Comparison of Energy Consumption for: 50% (left) and 100% (right) axle with NGWBT based on scenario 3 SS and the low traffic level. .. 20
Figure H- 3. Comparison of energy consumption for (a) 50% and (b) 100% axle with NGWBT based on scenario 1 SS and the high traffic level. .. 21
Figure H- 4. Comparison of energy consumption for 50% (left) and 100% (right) axle with NGWBT based on scenario 2 SS and the high traffic level. .. 21
Figure H- 5. Comparison of energy consumption for 50% (left) and 100% (right) axle with NGWBT based on scenario 3 SS and the high traffic level. .. 21
LIST OF TABLES

Table 1-1: FEM features vs. MEPDG assumptions (adapted from Gungor et al., 2016) 1
Table 3-1. Quarterly Temperature Distribution in New Brunswick... 8
Table 4-1. Percentage Increase in Pavement Responses due to Change in Materials Properties........ 15
Table 4-2: Responses Needed for the Calculation of Combined Damage Ratio 20
Table 4-3: Number of Repetitions to Failure for the Calculation of Combined Damage Ratio......... 20
Table 4-4: Effective Number of Repetitions to Failure for Different Distresses and Tire Configurations
... 21
Table 4-5: Input parameters for considered scenarios ... 22

Table D-1. Data Sources for Material and Construction Stages .. 9
Table D-2. AC Mix Design Information .. 9
Table D-3. Mix Design Volumetrics .. 9
Table D-4. Specific Gravity and Modulus of Granular Materials .. 10
Table D-5. Baseline Pavement Rehabilitation Schedule for High Traffic Level (Analysis Period: 48 Years) .. 10
Table D-6. Baseline Pavement Rehabilitation Schedule for Low Traffic Level (Analysis Period: 48 Years) ... 10
CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

First-generation wide-base tires (FGWBT) were introduced in North America as an alternative to conventional dual-tire assembly (DTA) in the early 1980s. Initially, the trucking industry adopted FGWBT to improve fuel efficiency and increase hauling capacity. However, FGWBT, with width ranging from 385 to 425 mm., have proved to be more damaging to pavement infrastructure than conventional DTA. In response to this drawback, new-generation wide-base tires (NGWBT) were introduced in the early 2000s. NGWBT have a width ranging between 445 and 455 mm in North America, and even 495 mm in Europe; they are aimed to preserve the benefits of FGWBT while reducing pavement damage.

A fair and comprehensive comparison between NGWBT and DTA requires quantitative approaches to evaluate the potential increment in pavement damage and environmental impacts. Currently, the most practical approach to calculate pavement damage relies on transfer functions, which link critical pavement responses to the number of repetitions to failure; however, it may not recognize the impact of tire size or configuration. On the other hand, the most powerful, reliable, and versatile tool to calculate critical pavement responses is the finite element method (FEM). This analytical approach is able to accurately consider the contact between tire and pavement through the use of three-dimensional nonuniform contact stresses/forces and realistic contact area. Loading input has paramount importance when comparing NGWBT and DTA because both tires use different mechanisms to transfer a truck load to the pavement. In addition, FEM can account for various material models (e.g., linear viscoelastic, nonlinear stress dependent, inelastic), continuous moving load, and arbitrary temperature distribution. These FEM features are far more realistic than the assumptions taken in conventional flexibles pavement analysis, such as the ones used by the Mechanistic-Empirical Pavement Design Guide (MEPDG) which are: static load, circular contact area, uniform contact stresses in the vertical direction only and equal to tire inflation pressure, and indirect consideration of viscoelastic materials. Table 1.1 summaries the differences between the features included in the FEM used and the MEPDG assumptions.

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Finite Element Model</th>
<th>MEPDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Load</td>
<td>Dynamic analysis considering viscoelasticity of AC and stress dependency of base layer</td>
<td>Linear Elastic Analysis</td>
</tr>
<tr>
<td></td>
<td>3-D contact load</td>
<td>Uniform vertical pressure</td>
</tr>
</tbody>
</table>
NGWBT is believed to provide environmental advantages over DTA. One of the environmental benefits of NGWBT is its relatively lower rolling resistance, which translates into lower fuel consumption and greenhouse gas emissions. Life-cycle assessment (LCA) quantifies the environmental benefits associated with material production, construction, and rehabilitation, equipment operation, pavement use phase, as well as pavement end of life. Therefore, a comparison of the environmental impact of using NGWBT in lieu of DTA is conducted.

LCA and quantitative pavement response prediction allow a comprehensive comparison between NGWBT and DTA. FEM analysis and LCA complement each other in the evaluation of the net impact of NGWBT compared with conventional DTA.

1.2 OBJECTIVE AND SCOPE

The main objective of this study is to compare NGWBT and conventional DTA in the province of New Brunswick, Canada, from two perspectives: pavement damage and environmental impact. The prediction of critical pavement responses is performed through advanced 3-D theoretical modeling. Responses from developed models are used in the assessment of both NGWBT and DTA on pavement performance and damage calculation for LCA. The comparison is limited to typical pavement structures in New Brunswick.

The general work plan of the project is presented in Figure 1-1. First, the information needed for the development of the pavement finite element models is gathered: material characterization, traffic, tire–pavement contact loads for both tires, and environmental conditions. Second, simulation of the pavement structures and damage calculation is performed using the FEM. Python script was used for preparing input file and post-processing of results. Finally, the LCA is completed, thus allowing a comprehensive comparison between NGWBT and DTA.
Figure 1-1. General steps in the assessment of DTA and NGWBT impact.

The objectives of this project include the following:

- Determine the impact of NGWBT and DTA on critical pavement responses and damage using FEM analysis. The FEM models include variables usually omitted in the conventional analysis of flexible pavement such as dynamic analysis, moving load, linear viscoelastic asphalt concrete (AC), nonlinear granular materials, 3-D contact loads, nonuniform temperature distribution in the AC layer, and interaction between pavement layers. FEM analysis is used to determine the critical pavement responses, which are maximum longitudinal tensile strains at the bottom of the AC, shear strain in each layer, and vertical strain in each layer.

- Perform LCA analysis on the considered pavement structures to obtain a comprehensive evaluation of the impact of NGWBT and DTA. The evaluation is mainly focused on the material, construction, use phase, and maintenance stages. Various market penetrations of NGWBT and percentage of axles equipped with NGWBT are analyzed.

1.3 OVERVIEW OF THE REPORT

The body of this report consists of seven chapters and eight appendices. Chapter 2 provides a concise literature review where existing research regarding the effect of WBT on pavements is presented. Chapter 3 details the pavement sections and the model considered in this project, in addition to material characterization, environmental factors, temperature seasonal variation, and definition of 3-D contact loads for both NGWBT and DTA. Chapter 4 focuses on the critical
pavement responses and damage calculation; while LCA results are presented in Chapter 5. Chapter 6 describes the development of a tool that allows quick analysis. Finally, Chapter 7 includes the conclusions of the project. The report also includes eight appendices to provide detailed results and calculations.
CHAPTER 2: LITERATURE REVIEW

Wide-base tires (WBT) usage has impact not only on pavement damage, but also on the environment. Since the 1980s, research efforts have focused on comparing pavement structural response between WBT and DTA. However, more recently, there has been increased interest in quantifying the environmental benefits of WBT for a holistic evaluation of both tire technologies.

Initially, NGWBT emerged as an alternative to FGWBT, which proved to be more damaging to pavements. Studies in Finland, Virginia, Pennsylvania, and California can be cited as examples of such findings. In Finland, FGWBT was compared with DTA, and it was found that FGWBT caused between 1.2 and 4 times more damage than DTA (Huhtala et al., 1989), with the difference decreasing as AC layer thickness increased (Huhtala, 1986). In Virginia, FHWA concluded that FGWBT created twice the rutting and 25% less fatigue life than DTA (Bonaquist, 1992). In addition, trucks traveling at 65 km/h increased pavement damage between 50 and 70% when using FGWBT in lieu of DTA (Sebaaly and Tabatabaee, 1992), and the number of repetitions for rutting failure in AC for FGWBT was between 10 and 60% the value for DTA (Harvey and Popescu, 2000). University of Florida showed that the number of repetition to reach 12.5 mm rutting at high temperature is the lowest for FGWBT 425 and the highest for DTA (Greene et al., 2009).

In Europe, several tire types were compared including NGWBT 495, FGWBT 385, DTA 315. Testing with different objectives in various countries showed that larger rutting was produced by FGWBT 385 (between 50 and 70% depending on pavement type), NGWBT 495 created 30% more rutting than DTA 315, and no significant difference was observed at the bottom of the AC if the pavement structure is very stiff (COST 334, 2001). However, NGWBT 495 performed better than DTA 295 in instrumented sections in Ohio (Xue and Weaver, 2015). Strain measurements on a 125-mm-thick AC pavement in Canada provided similar magnitudes for NGWBT and DTA in the base during summer, but higher values for NGWBT during spring (Pierre et al., 2003). In some instances, similar responses were reported between the two tires, such as in a research performed by the National Center for Asphalt Pavement technology for tensile strains at the bottom of the AC and stress on top of the subgrade (Priest and Timm 2006). After combining various damage mechanisms, lower combined damage ratios were reported for NGWBT in Virginia (Al-Qadi et al., 2004; Al-Qadi et al. 2005a; Al-Qadi et al., 2005b; and Elseifi et al. 2006).

Accelerated pavement testing has been beneficial for comparing the two tire technologies at hand. This approach was used by researchers at University of Illinois to conclude that FGWBT 425 is more damaging than NGWBT 455 (Al-Qadi and Wang 2009a; Al-Qadi and Wang 2009b; Al-Qadi and Wang 2009c; and Dessouky et al., 2006). Similarly, experimental measurement in a pavement test track showed NGWBT creating 30% higher strains at the bottom of the AC (Grellet et al, 2012; Grellet et al., 2013).

Numerical models have also been used to predict pavement responses and study WBT and DTA. Multiple software has been implemented to compare pavement responses from WBT and DTA, including BISAR (Sebaaly and Tabatabaee, 1989), VESYS-DYN (Gillespie et al., 1992), CIRCLY (Perdomo and Nokes, 1993), and 3D-MOVE (Siddharthan et al., 2002). Besides consistently
showing higher responses/damage for wide-base tires, numerical models highlighted the importance of the tire–pavement contact assumptions when comparing both tire technologies, mainly in regions close to the surface. The finite element software ABAQUS is the most versatile tool to accurately analyze pavement structure, and it has been used to continuously improve numerical representations of flexible pavement (Kim et al., 2009; Yoo et al., 2006; Elseifi et al., 2006; Al-Qadi and Yoo, 2007; Yoo and Al-Qadi, 2007; Yoo and Al-Qadi, 2008; Al-Qadi et al., 2010).

From an environmental point of view, it has been reported that the transportation sector is the second largest greenhouse gas (GHG) contributor after the oil and gas sector in Canada in 2014; and the operation of freight accounts for 32% of the transportation sector (Environment and Climate Change Canada, 2016). The same reference showed that emissions from light trucks and freight trucks increased by 123% and 132%, respectively, between 1990 and 2014; indicating improving the fuel efficiency of trucks can significantly contribute to the GHG reduction.

NGWBT provides considerable benefits in fuel efficiency (between 2 and 10%), hauling capacity, and ride comfort (Al-Qadi and Elseifi, 2008). GENIVAR (now rebranded WSP Global) found the net saving of NGWBT is $10.3 million per year when direct costs and benefits were considered. Based on the conducted survey, six of the seven firms in Québec experienced reductions in fuel consumption between 3.5% and 12% (GENIVAR, 2005). Franzese et al. (2010) found fuel economy improvement as the number of NGWBT on the Class 8 trucks increases; a 6% increase when either the tractor or the trailer is equipped with NGWBT and a 9% increase if both the tractor and the trailer are equipped with NGWBT. Ponniah et al. (2010) estimated 1.5% fuel economy improvement per axle after a thorough review of aforementioned studies. The U.S. Environmental Protection Agency (2016) and Michelin (2016) estimated fuel savings of 3% and up to 10%, respectively. Another study by Kang et al. (2017) used a 3.2% fuel saving for NGWBT for LCA analysis.

Earlier European pavement LCA studies (Häkkinen & Mäkelä, 1996; Stripple, 2001) evaluated the environmental impacts of tires on concrete and asphalt pavements. Meli (2006) conducted an LCA study on concrete and asphalt pavements in Canada. Research gaps in pavement LCA were studied by Santero (2009), and the impact of pavement surface characteristics, vehicle type, and traffic on rolling resistance (RR) was studied by Wang et al. (2012). Pavement LCA guideline (Van dam et al., 2015) and framework (Harvey et al., 2016) documents were recently published by the FHWA. However, the environmental impacts of using NGWBT in pavement LCA have not been extensively studied.

Greater pavement damages can cause earlier pavement deterioration, triggering more frequent pavement rehabilitation during its design life. Therefore, the LCA analysis should be conducted to determine the net benefit of using NGWBT in the pavement LCA framework. In the present study, both pavement structural response and environmental impact are utilized to perform a comprehensive evaluation of NGWBT and DTA on road infrastructure in New Brunswick.
CHAPTER 3: FINITE ELEMENT MODEL

This chapter describes the main components of the pavement finite element method (FEM) model: material properties, pavement temperature, and tire loading. For material properties, the model for each layer in the pavement structure is described. In addition, ambient temperature for each season and its variation through the AC layer are summarized. This section of the report describes the general configuration of the model regarding geometry and finite element types.

3.1 MATERIAL PROPERTIES

Three material behaviors were incorporated in the finite element model: linear viscoelasticity, nonlinear stress dependent, and linear elastic. Linear viscoelasticity was applied to AC based on 14 dynamic modulus test results reported in the Long-Term Pavement Performance (LTPP) database for sections in New Brunswick. The information was processed to calculated Prony series terms and Williams-Landel-Ferry constant, which were input in ABAQUS to model AC as linear viscoelastic. Figure 3-1 shows the master curve of the AC layer.

![Figure 3-1. Master curve of asphalt concrete.](image)

The resilient modulus for crushed rock and gravel bases were characterized as nonlinear (stress dependent) cross-anisotropic. Even though stress dependency and cross-anisotropy increase the complexity of the finite element model, they are relevant factors in calculating pavement responses when AC thickness is relatively small (Kim et al., 2005). Material constants in this model are calculated based on a resilient modulus test that applies pulse loads in the vertical and radial direction; a database of these laboratory measurements was utilized to characterize the base layers of this study (Tutumluer, 2008; Tutumluer and Thompson, 1998). Subbase, borrow, and subgrade materials were assumed to be linear elastic. All needed properties were selected from
LTPP databases, except for the rock material, which was not part of New Brunswick pavement sections at the time the LTPP testing was performed.

3.2 PAVEMENT TEMPERATURE

Seasonal temperature variation must be considered when modeling flexible pavements because of its significant influence on AC behavior. New Brunswick is governed by a humid continental climate with a yearly temperature ranging from -8.3 to 17 °C. The temperatures considered in this study are defined based on the average temperature variation per quarter as shown in Table 3-1. Finally, temperature distribution through the AC surface layer is determined based on an analytical one-dimensional temperature distribution model (Wang et al., 2009).

Table 3-1. Quarterly Temperature Distribution in New Brunswick

<table>
<thead>
<tr>
<th>Month</th>
<th>Season</th>
<th>Avg. Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>Fall</td>
<td>7</td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>Winter</td>
<td>-8.3</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>Spring</td>
<td>3.3</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>Summer</td>
<td>17</td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 LOAD CALCULATION AND DISTRIBUTION

A NGWBT and DTA loaded at 4500 kg with a tire inflation pressure of 690 kPa were considered (see Figure 3-2). The contact forces were based on earlier measurements by the Council for Scientific and Industrial Research in South Africa using the Stress-In-Motion system (De Beer and Fisher, 2013; Hernandez et al., 2013). Critical pavement responses, mainly close to the surface, are affected by the non-uniformity and three-dimensionality of tire–pavement contact loads (Al-Qadi and Yoo, 2007). In addition, NGWBT and DTA have very different load transfer mechanisms, so accurate comparison of pavement damage from both tires requires realistic loading characterization.
Figure 3-2. Tested NGWBT (left) and tested DTA (right).

Figure 3-3 shows a representative variation of the contact loads in the vertical, transverse, and longitudinal direction along the contact length for both tires; the figure only presents values at a specific location across the tire. As can be seen, NGWBT exhibits higher vertical contact stresses. In addition, previous analyzes have shown that contact area is higher for DTA (Hernandez et al., 2013). For the selected location, there are not significant difference in the longitudinal and transverse direction (around the tire center for both tires).

Figure 3-3. Variation of vertical, transverse, and longitudinal contact forces along contact length.
3.4 FINITE ELEMENT MODEL

The developed models were previously implemented for comparing NGWBT and DTA (Hernandez et al., 2016), including factors usually omitted in the conventional analysis of flexible pavements, which proved to be relevant when calculating critical pavement responses. The factors include: dynamic analysis (Yoo and Al-Qadi, 2007), continuous moving load (Yoo et al., 2006), nonuniform 3D contact stresses (Al-Qadi and Yoo, 2007), nonuniform temperature distribution in the AC layer, interaction between pavement layers (Yoo et al., 2006), and infinite boundary elements.

The pavement model and the geometric configuration are shown in Figure 3-4. The model geometry consists of a wheel path, two transition zones (L1-B1 and L2-B2), and infinite elements. In the transition zone, the elements size is changes from small in the wheel path to coarse in the boundary. The size and type of finite element were determined by a mesh sensitivity analysis, comparing results from a finite element model with a multi-linear elastic solution. The main objective of the mesh sensitivity analysis is to find the coarsest mesh (low computational time) that provides accurate results. It should be highlighted that this simplified version of the pavement model was exclusively used to determine dimensions and finite element configuration; critical pavement responses were calculated using a full 3-D model that considered the variables described in the previous paragraph. Model validation (i.e., comparison between computer predicted and measured pavement responses) was performed in previous studies following the same modeling approach as in this study (Gungor et al., 2016).

![Figure 3-4. Pavement model using ABAQUS (left) and geometric configuration in plan view (right).](image_url)
CHAPTER 4: CRITICAL PAVEMENT RESPONSES AND PAVEMENT DAMAGE

4.1 PAVEMENT STRUCTURES AND ANALYSIS MATRIX

The pavement sections considered are arterial highways making a full loop around New Brunswick, Canada, passing through a wide variety of subgrade soils and bedrock types. The comparison is limited to three pavement structures, all with the same AC thickness (140 mm), a granular base of 150 mm, a subbase of 450 mm, on top of a 600-mm-thick layer of Borrow “A” material and a glacial till. The difference between the three sections lies in the material properties of the base and subbase: Section 1 has a crushed rock base and subbase; Section 2 has crushed gravel base and subbase; and Section 3 has crushed gravel base and crushed stone subbase. Section 1 represents the new highway standard section of New Brunswick; while Sections 2 and 3 represent old pavement sections. Figure 4-1 shows the configuration of the sections considered in this project.

Due to the lack of information to properly match crushed rock with the available database, an alternative approach was implemented where base and subbase were categorized in three groups depending on their resilient modulus: weak, medium, and strong. Crushed gravel was identified as having medium resilient modulus, so five possible base–subbase combinations cover Sections 1, 2, and 3: weak–weak, medium–medium, strong–strong, medium–weak, and medium–strong. For the base, three non-linear stress-dependent material characterizations were made (weak, medium and strong). Moreover, the subbase was assumed to have a linear elastic behavior at moduli of 414 MPa (strong base), 287 MPa (medium base), and 137 MPa (weak base).

Figure 4-1. Sections considered in the analysis.
The finite element matrix included the combination of four seasons (fall, winter, spring and summer), two tire configurations (NGWBT and DTA), and five base–subbase combinations, thus rendering 40 finite element models.

4.2 CRITICAL PAVEMENT RESPONSES

Critical pavements responses are the ones linked to specific distresses through transfer functions. The critical pavement responses of interest in this project are tensile strain at the bottom of the AC, vertical strain on top of subgrade, and shear strain in the AC layer. The analyses were conducted for NGWBT and DTA; the steering wheel was not considered.

4.2.1 Tensile Strain at the Bottom of the AC

![Figure 4-2: Tensile strain at the bottom of the AC layer](image)

The variation of the tensile strain at the bottom of the AC (shown in Figure 4-2) for a strong base–subbase combination is shown in Figure 4-3. NGWBT created between 16 and 18% higher tensile strain at the bottom of the AC layer as compared to DTA. This can be explained by the lower contact area and higher contact loads for NGWBT. Regarding the effect of temperature, the tensile strain at the bottom of the AC increased with increasing temperature. This behavior is expected because the stiffness of the AC layer decreases as the temperature becomes higher. It was also noticed that the effect of temperature on $\varepsilon_{11,\text{ac}}$ becomes minimal for lower magnitudes (e.g., winter vs. spring). The percentage increases in the response for DTA from winter to spring is 0.9%, which is significantly lower than 42.2%, the change from spring to summer. The variation between the same seasons for NGWBT are 0.8 and 43.0%.
Figure 4-3. Tensile strain at bottom of AC for different temperatures, tire configuration, and strong base–subbase combination.

4.2.2 Vertical Strain on Top of the Subgrade

As observed in Figure 4-5, NGWBT and DTA caused almost the same vertical strain on top of the subgrade ($\varepsilon_{22,sg}$). The location of the measured critical response is shown in Figure 4-4. The maximum percentage difference between the two tires is 1.7%. The negligible difference is caused by the lack of influence of contact loads distribution deep inside the pavement structure. Moreover, the comparison between responses of different seasons shows that temperature impact is minimal because it mainly influences AC layer. The influence vanishes in the subgrade, which is more than 1 m underneath the surface.
4.2.3 Shear Strain in AC

Using smaller contact area to transfer load from truck to pavement can also explain higher shear strain values for NGWBT; location of the calculated shear strain is shown in Figure 4-6. Shear strain was around 20% higher for NGWBT (see Figure 4-7). As previously mentioned, NGWBT creates deeper deformations basin, so the distortion, which is directly related to shear strain, is higher. It is also noted that, as in the other critical pavement responses, the highest seasonal effect occurs between fall and summer, and there are no relevant changes between the other seasons.
Figure 4-7. Shear strain in AC layer for different temperatures, tire configuration, and strong base–subbase.

Previous analysis corresponds to the strong base–subbase combination; similar trends were observed for the other base–subbase combinations. Table 4-1 presents the percentage increment of the specified response for the weak combination compared to strong. For instance, the first value in the table indicates that during fall season, the tensile strain at bottom of the AC increased 10.6% when the base–subbase combination changed from strong to weak. The increments varied between 3.5% for $\varepsilon_{23,ac}$ and NGWBT during winter and 16.1% for $\varepsilon_{11,ac}$ and DTA during summer. It was noted that the higher changes were seen for tensile strain at the bottom of the AC and the highest temperature. The actual values of all critical pavement responses, pavement sections, and seasons are presented in Appendix A.

Table 4-1. Percentage Increase in Pavement Responses due to Change in Materials Properties

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \varepsilon_{11,botac}$ (%)</th>
<th>$\Delta \varepsilon_{22,sg}$ (%)</th>
<th>$\Delta \varepsilon_{23,ac}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTA</td>
<td>10.6</td>
<td>6.6</td>
<td>5.5</td>
</tr>
<tr>
<td>WBT</td>
<td>9.8</td>
<td>6.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTA</td>
<td>9.5</td>
<td>5.8</td>
<td>5.2</td>
</tr>
<tr>
<td>WBT</td>
<td>8.7</td>
<td>5.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTA</td>
<td>16.1</td>
<td>10.3</td>
<td>9.1</td>
</tr>
<tr>
<td>WBT</td>
<td>14.6</td>
<td>10.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTA</td>
<td>9.1</td>
<td>5.8</td>
<td>4.6</td>
</tr>
<tr>
<td>WBT</td>
<td>8.4</td>
<td>5.9</td>
<td>3.5</td>
</tr>
</tbody>
</table>

4.3 COMBINED DAMAGE RATIO

Four pavement distresses were considered: bottom-up fatigue cracking, near-surface fatigue cracking caused by near-surface shear strain, AC rutting, and subgrade rutting. Each of the critical
pavement responses is linked to a failure mechanism through transfer functions as follows: tensile strain at the bottom of the AC is associated with bottom-up fatigue cracking, shear strain is related to near-surface fatigue cracking, and AC and subgrade rutting greatly depend on the vertical strains. Equations to calculate the number of repetitions to failure for each pavement distress are presented in Appendix B. The ratio between the number of repetitions to failure caused by both tires can be calculated as follows:

\[DW = \frac{N_{DTA}}{N_{WBT}} \]

(4-1)

where \(DW \) is the ratio of number of repetitions to failure between DTA and NGWBT for a specific distress; \(N_{DTA} \) is the allowable number of loading repetitions for DTA; and \(N_{NGWBT} \) is allowable number of loading repetitions for NGWBT. Consequently, four \(DW \) values can be calculated: \(DW_{BU} \) for bottom-up fatigue cracking, \(DW_{TDS} \) for near-surface cracking caused by shear strain in the AC, \(DW_{RS} \) for subgrade rutting, and \(DW_{RH} \) for rutting in the AC layer.

Figure 4-8 shows the ratios for strong base and subbase and all the seasons. The highest ratio between the seasons was 3.1 and was observed for near-surface cracking caused by shear strain. Conversely, subgrade rutting showed the lowest ratio with an average of 1.07, agreeing with the fact that the influence of contact loads decreased with depth. Similar trends and ratios, which are presented in Appendix C, were found for the other base and subbase materials.

Figure 4-8. Damage ratio for considered distresses and seasons and strong base and subbase.

The values in Figure 4-8 assume that there is no interaction between various failure mechanisms in the pavement, which is unrealistic. The failure mechanisms considered were combined using a logarithmic weighting factor. This is especially beneficial as the variables to be integrated spread over several orders of magnitude. The combined NGWBT to DTA ratio can be calculated using the following equation (Al-Qadi et al. 2004):

\[0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5 \]

\[DW_{BU} \quad DW_{TDS} \quad DW_{RS} \quad DW_{RH} \]

Damage Ratio (DTA to WBT)

- Winter
- Spring
- Fall
- Summer
\[CDW = a_{BU}DW_{BU} + a_{TDS}DW_{TDS} + a_{RS}DW_{RS} + a_{RH}DW_{RH} \]

\[a_i = \frac{\frac{1}{10 \log(N_i)}}{\frac{1}{10 \log(N_{BU})} + \frac{1}{10 \log(N_{TDS})} + \frac{1}{10 \log(N_{RS})} + \frac{1}{10 \log(N_{RH})}} \]

where: \(CDW \) is the combined \(DW \) ratio, \(DW_{BU} \) is the \(WD \) ratio for bottom-up fatigue cracking, \(DW_{TDS} \) is the \(WD \) ratio for near-surface cracking caused by shear strain, \(DW_{RS} \) is the \(WD \) ratio for subgrade rutting, \(DW_{RH} \) is the \(WD \) ratio for AC rutting, and \(i \) is the distress considered. Figure 4-9 presents a summary of \(CDW \) values for the analysis matrix, where the horizontal axis indicates the base and subbase material (S: strong, M: medium, and W: weak). It can be observed that, even though the responses vary greatly from one season to the other, \(CWD \) is relatively consistent. However, summer provided higher cumulative ratios.

![Figure 4-9. Cumulative damage ratio.](image)

It should be noted that the damage ratios reported assume that, for the same pavement section, all traffic is changed from DTA to WBT, which is unrealistic. To address this issue, the following approach was used to include various percentage of NGWBT usage in the roads of New Brunswick.

4.4 DAMAGE DUE TO TRAFFIC

The combined \(DW \) ratio compares the number of repetitions to failure from NGWBT and DTA. If used to compare the effect of the two tires on pavements, \(CDW \) indirectly assumes that the same road is subjected exclusively to either NGWBT or DTA, which is unfeasible. A procedure to consider various market penetration of NGWBT is presented in this section; the procedure is based on reducing the number of load repetitions a pavement can withstand when subjected to
NGWBT. Based on the cumulative damage theory, the yearly damage for a distress can be written as follow:

\[D = \sum_{i=1}^{n} \frac{n_i}{N_i} = \frac{n_{fa}}{N_{fa}} + \frac{n_{wt}}{N_{wt}} + \frac{n_{sm}}{N_{sm}} + \frac{n_{sp}}{N_{sp}} = \frac{n}{N} \]

(4-4)

where \(n_i \): number of load applications in season \(i \)
\(N_i \): number of load applications to cause failure in season \(i \)
\(i = fa, wt, sp, \) and \(sm \): fall, winter, spring, and summer, respectively
\(n \): number of load applications in the design period
\(N \): effective number of repetitions to failure

Assuming that the traffic in the design period can be equally divided between the seasons and using Eq. (4.4), the effective number of repetitions to failure for each distress can be calculated as follows:

\[N_j = \frac{4}{\sum \left(\frac{1}{N_{fa,j}} + \frac{1}{N_{wt,j}} + \frac{1}{N_{sm,j}} + \frac{1}{N_{sm,j}} \right)} \]

(4-5)

where \(j = BU, TDS, RS, \) and \(RH \) indicates the distress type (\(BU \) bottom-up fatigue cracking, \(TDS \) for near-surface cracking caused by shear strain, \(RS \) for subgrade rutting, and \(RH \) ratio for AC rutting). The number of load applications to failure in each season and distress \(N_{i,j} \) is calculated using the equations in Appendix B and responses presented in section 4.2. The combined number of repetitions to failure that includes market penetration can be calculated using the following equation:

\[N_j = C_{WBT} \times N_{WBT,j} + (1 - C_{WBT}) \times N_{DTA,j} \]

(4-6)

where: \(C_{WBT} = w \times PA_{WBT} \): NGWBT contribution coefficient
\(N_j \): number of repetitions to failure for distress \(j \)
\(w \): market penetration percentage (%)
\(PA_{WBT} \): percentage axles with wide-base tires (%)
\(N_{DTA,j} \): number of repetitions to failure by DTA for distress \(j \)
\(N_{WBT,j} \): number of repetitions to failure by NGWBT for distress \(j \)

On the other hand, to calculate the total number of load applications, the following equation is used (AASHTO method):

\[ESAL = 365 \times AADT_{t=0} \times T \times T_f \times GY \times D \times L \]

(4-7)

where \(ESAL = n \): equivalent single axle load or number of load repetitions
\(AADT_{t=0} \): average annual daily traffic at time \(t = 0 \)
\(T \): percentage of trucks
\(T_f \): truck factor
\(GY \): growth factor for a specific number of years
D: directional distribution factor
L: lane distribution factor

Note that including NGWBT in the traffic calculation is not feasible because of the lack of truck factor for such tires. The truck factor used in equation 4-7 can be obtained from AASHTO design manual. The growth factor is computed as follows:

$$GY = \frac{(1 + r)^Y - 1}{r}$$ \hspace{1cm} (4-8)$$

where GY: growth factor
r: growth rate
Y: number of years of interest

Finally, the cumulative damage ratio for the four distresses considered in this study is calculated as follow:

$$CDR = a_{BU} \frac{n}{N_{BU}} + a_{TDS} \frac{n}{N_{TDS}} + a_{RS} \frac{n}{N_{RS}} + a_{RH} \frac{n}{N_{RH}}$$ \hspace{1cm} (4-9)$$

$$a_i = \frac{1}{\log(N_i)}$$ \hspace{1cm} (4-10)$$

where: CDR= combined damage ratio for a road subjected to NGWBT and DTA
N_{BU}= repetitions to failure for bottom-up fatigue cracking
N_{TDS}= repetitions to failure for near-surface cracking caused by shear strain
N_{RS}= repetitions to failure for subgrade rutting
N_{RH}= repetitions to failure for AC rutting
i= Distress considered (i=BU, TDS, RS, or RH)

In order to calculate the additional pavement damage caused by the presence of NGWBT in a given traffic, the previously calculated CDR should be normalized with respect to the CDR of a traffic with zero market penetration. The $Normalized CDR$, is calculated as follow:

$$Normalized CDR = \frac{CDR}{CDR_{w=0}}$$ \hspace{1cm} (4-11)$$

where: CDR = combined damage ratio for a road subjected to both NGWBT and DTA
$CDR_{w=0}$ = combined damage ratio for a road subjected DTA only ($w = 0$)

If $Normalized CDR$ is higher than one, the magnitude exceeding one is the percentage increase in damage.
4.5 EXAMPLE OF DAMAGE DUE TO TRAFFIC

The objective of this solved example is to show a step-by-step procedure of how to calculate the cumulative damage ratio of a pavement structure with thickness shown in Figure 4-1. The inputs to this application are as follows:

- Modulus of base: 414 MPa (strong nonlinear base)
- Modulus of subbase: 414 MPa
- Analysis period: 30 Years
- Market penetration: 10%
- Percent of axles with Wide-base Tire: 50%
- Directional AADT: 7000
- Growth rate: 1%
- Truck percent: 20%
- Truck factor: 0.69
- Lane distribution factor: 0.5

Step I: Calculate critical pavement responses ($\varepsilon_{11,botac}$, $\varepsilon_{22,sg}$, $\varepsilon_{23,ac}$, and $\varepsilon_{22,ac}$) for both tires and four seasons using the finite element model. Table 4-2 shows all the critical pavement responses collected for the calculation of CDR.

<table>
<thead>
<tr>
<th>Season</th>
<th>Tire</th>
<th>$\varepsilon_{11,botac}$</th>
<th>$\varepsilon_{22,sg}$</th>
<th>$\varepsilon_{23,ac}$</th>
<th>$\varepsilon_{22,ac}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DTA</td>
<td>65.68</td>
<td>105.00</td>
<td>24.08</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>78.08</td>
<td>107.15</td>
<td>30.26</td>
<td>-</td>
</tr>
<tr>
<td>Winter</td>
<td>DTA</td>
<td>60.33</td>
<td>102.50</td>
<td>21.43</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>71.82</td>
<td>103.88</td>
<td>26.78</td>
<td>-</td>
</tr>
<tr>
<td>Spring</td>
<td>DTA</td>
<td>60.85</td>
<td>102.90</td>
<td>21.76</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>72.43</td>
<td>104.34</td>
<td>27.27</td>
<td>-</td>
</tr>
<tr>
<td>Summer</td>
<td>DTA</td>
<td>104.62</td>
<td>120.00</td>
<td>43.37</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>126.22</td>
<td>122.10</td>
<td>56.91</td>
<td>-</td>
</tr>
</tbody>
</table>

Step II: Calculate the total number of repetitions to failure for each distress, tire configuration, and season using the transfer functions in Appendix B. Table 4-3 summarizes all calculated N_f.

<table>
<thead>
<tr>
<th>Season</th>
<th>Tire</th>
<th>N_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DTA</td>
<td>65.68</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>78.08</td>
</tr>
<tr>
<td>Winter</td>
<td>DTA</td>
<td>60.33</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>71.82</td>
</tr>
<tr>
<td>Spring</td>
<td>DTA</td>
<td>60.85</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>72.43</td>
</tr>
<tr>
<td>Summer</td>
<td>DTA</td>
<td>104.62</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>126.22</td>
</tr>
</tbody>
</table>
Step III: Using Eq. (4-5), calculate the effective number of repetitions to failure (combination of all seasonal N_f) for each distress. The output of this equation is shown in Table 4-4.

<table>
<thead>
<tr>
<th>Season</th>
<th>Tire</th>
<th>N_{BU}</th>
<th>N_{RS}</th>
<th>N_{TDS}</th>
<th>N_{RH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DTA</td>
<td>5.57×10^9</td>
<td>8.88×10^8</td>
<td>2.11×10^8</td>
<td>2.17×10^9</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>2.67×10^9</td>
<td>8.11×10^8</td>
<td>8.12×10^7</td>
<td>1.70×10^9</td>
</tr>
<tr>
<td>Winter</td>
<td>DTA</td>
<td>2.04×10^9</td>
<td>9.89×10^8</td>
<td>8.76×10^7</td>
<td>7.22×10^{10}</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>1.001×10^9</td>
<td>9.31×10^8</td>
<td>3.54×10^7</td>
<td>5.67×10^{10}</td>
</tr>
<tr>
<td>Spring</td>
<td>DTA</td>
<td>5.11×10^9</td>
<td>9.72×10^8</td>
<td>2.13×10^8</td>
<td>4.41×10^9</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>2.44×10^9</td>
<td>9.13×10^8</td>
<td>8.33×10^7</td>
<td>3.43×10^9</td>
</tr>
<tr>
<td>Summer</td>
<td>DTA</td>
<td>2.57×10^9</td>
<td>4.88×10^8</td>
<td>6.00×10^7</td>
<td>1.85×10^8</td>
</tr>
<tr>
<td></td>
<td>NGWBT</td>
<td>1.15×10^9</td>
<td>4.52×10^8</td>
<td>1.93×10^7</td>
<td>1.42×10^8</td>
</tr>
</tbody>
</table>

Table 4-4: Effective Number of Repetitions to Failure for Different Distresses and Tire Configurations

<table>
<thead>
<tr>
<th>Tire</th>
<th>N_{BU}</th>
<th>N_{RS}</th>
<th>N_{TDS}</th>
<th>N_{RH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTA</td>
<td>5.57×10^9</td>
<td>8.88×10^8</td>
<td>2.11×10^8</td>
<td>2.17×10^9</td>
</tr>
<tr>
<td>NGWBT</td>
<td>2.67×10^9</td>
<td>8.11×10^8</td>
<td>8.12×10^7</td>
<td>1.70×10^9</td>
</tr>
</tbody>
</table>

Step IV: Using Eq. (4-6), compute the combined number of repetitions to failure that includes market penetration. At this step, each distress will have one number of repetitions to failure. The combined number of repetitions to failure for the five distresses considered in this example are: $N_{BU} = 3.72 \times 10^9$; $N_{RS} = 8.31 \times 10^8$; $N_{RH} = 1.95 \times 10^{10}$; and $N_{TDS} = 1.39 \times 10^8$.

Step V: Finally, all distresses are combined using Eq. (4-9) and (4-10). The CDR for the case in this example is 0.01.

Using the New Brunswick Pavement Analysis Tool (NBPAT), which is introduced and described in Chapter 6, the effect of different market penetrations and AADTs on the cumulative damage ratio (CDR) was calculated. The example includes an AADT of 7000 and multiple market penetrations. The market penetration varied from 0 to 100% with increments of 5%. The effect of NGWBT market penetration on CDR is shown in Figure 4-10. As expected, results show that higher market penetration causes more damage to the pavement and that the rate of pavement deterioration increases with increasing market penetration.
4.6 DAMAGE ASSOCIATED WITH NGWBT

To calculate the percent increase in damage associated with NGWBT use, three scenarios of market penetration (5, 10 and 15%) were developed. For each of the considered cases, the percent axles with NGWBT varied from 5 to 100% at a 5% increment. It is important to mention that all three scenarios have the same base and subbase strength values and traffic data. A summary of all the input parameters is presented in Table 4-5.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Modulus Base (MPa)</th>
<th>Modulus Subbase (MPa)</th>
<th>Analysis Period (Years)</th>
<th>Market Penetration (%)</th>
<th>Percent Axles with NGWBT</th>
<th>Directional AADT</th>
<th>Growth Rate (%)</th>
<th>Truck Percent (%)</th>
<th>Truck Factor</th>
<th>Lane Distribution Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>414</td>
<td>414</td>
<td>30</td>
<td>5</td>
<td>5 - 100</td>
<td>7000</td>
<td>1</td>
<td>20</td>
<td>0.69</td>
<td>0.5</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>5-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>5-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-11 provides the expected increase in damage associated with the market penetration and percentage of axles with NGWBT.
Figure 4-11: Percentage increase in damage for various market penetrations.
CHAPTER 5: LIFE-CYCLE ASSESSMENT

Life-cycle assessment (LCA) is a technique widely adopted for quantifying the environmental impacts of a product or a system during its life cycle. In this section, LCA is performed to achieve the following objectives: i) develop a methodology analyzing the interaction between NGWBT and pavements; ii) evaluate the effect of new-generation wide-base tire on energy consumption and global warming potential (GWP) during the design life of pavements; and iii) study the effect of NGWBT market penetration, granular layer strength, and traffic level through the sensitivity analysis. In addition, 1.5% fuel saving per NGWBT axle was assumed, as it reasonably estimates the fuel economy improvement.

5.1 METHODOLOGY

The pavement LCA has five stages as defined in Error! Reference source not found.. In this study, all stages, except end of life, are considered.

The methodology suggested to conduct the LCA analysis is illustrated in Error! Reference source not found.. Key variables in the study include the following:

- Tire type (DTA and NGWBT)
- NGWBT market penetration (0, 5, 10, 50, and 100%)
- Base/subbase stiffnesses (SS, WW, MM, MW, MS; where “S” refers to strong, “M” refers to medium, and “W” refers to weak)
- Seasonal stiffness of surface AC
- Traffic levels (“low” = AADT of 7,631 with a 20% truck, and “high” = AADT of 38,155 with a 20% truck)

Different pavement responses resulting from using DTA and NGWBT represent the starting point of the LCA study. Assuming all trucks are equipped with either DTA or NGWBT is insufficient to see how the environmental impacts change between the two cases, so five different levels (0, 5, 10, 50, and 100%) are considered.
10, 50, and 100%) of NGWBT market penetration are used. As seen in previous chapters, the use of different base/subbase and seasonal AC stiffness can influence strain values at critical locations (bottom of HMA surface and top of subgrade) that may affect the result of the LCA analysis. In addition, two different traffic levels are considered to predict the expected life of pavements. All structural layers above the subgrade of a two-lane mainline pavement are considered in the study.

Two environmental impacts—global warming potential (GWP) and energy consumption—are considered. Energy consumption refers to the primary and secondary energy consumed in material production and construction equipment operation but excludes the feedstock energy of asphalt binder. The embodied energy of fuel combusted is considered in the use phase. The analysis period of the study is 48 years and the functional unit is project-mile. U.S. Environmental Protection Agency (EPA) Tools for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) 2.1 was used for impact characterization.

For material and construction stages, life-cycle inventory (LCI) data are primarily adopted from commercial LCI database and literatures. Detailed information of AC mix design, material and construction, LCI data sources, and other material properties are listed in Appendix D. Traffic delays caused by construction activities are not considered assuming maintenance/rehabilitation take place at night time. A default maintenance schedule of pavements (Appendix D) is obtained from the IDOT manual (IDOT, 2013) but modified when needed to reflect the variations in pavement performance due to roughness, fatigue cracking, or rutting. In other words, a pavement rehabilitation is triggered when one of the following conditions is met:

- IRI is greater than or equal to 2.76 m/km (175 in/mi) – the IRI threshold value
- Cumulative traffic (ESAL) exceeds AC fatigue allowable repetitions
- Cumulative traffic (ESAL) exceeds subgrade rutting allowable repetitions

The allowable number of repetitions for fatigue and rutting is calculated based on the Asphalt Institute transfer functions (Appendix E). Rolling resistance induced by pavement roughness and fuel saving from NGWBT are considered in the use phase. Pavement roughness is quantified using International Roughness Index (IRI) and a use phase model is used to calculate the additional fuel consumption due to pavement roughness (Ziyadi et al., 2017b). As aforementioned, a 1.5% fuel saving per axle is considered for trucks equipped with NGWBT. The IRI progression is computed based on the historical IRI data of a principal arterial highway in New Brunswick and has the following form:

\[
IRI(t) = 1.0876e^{0.0607t}
\]

(5-1)

Every time rehabilitation is applied, the IRI value drops to the initial IRI value, \(IRI(t = 0)\), and progresses as predicted by Eq. (5.1). Since the IRI progression for NGWBT is not developed to date, the following three scenarios are assumed:

- Scenario 1: DTA and NGWBT have the same fatigue cracking and rutting potential; therefore, the only difference comes from the fuel saving from NGWBT
- Scenario 2: DTA and NGWBT have different fatigue cracking potential but the same rutting potential. The fuel saving from NGWBT still applies
- Scenario 3: DTA and NGWBT have the same fatigue cracking potential but different rutting potential. The rutting performance is used as an approximate indicator for roughness performance; and IRI performance between DTA and NGWBT is calculated using the equation below (Von Quintus et al., 2001). Examples of IRI progression for the low and high traffic levels and different levels of NGWBT market penetration are shown in Appendix F

\[
\Delta IRI_{WBT\ year_j-year_i} = \Delta IRI_{DTA\ year_j-year_i} \times \frac{Rutting\ life\ with\ DTA}{Rutting\ life\ with\ WBT}
\]

(5-2)

where:
- \(\Delta IRI_{WBT\ year_j-year_i}\) Increase in IRI value between year \(j\) and \(i\) under NGWBT (m/km)
- \(\Delta IRI_{DTA\ year_j-year_i}\) Increase in IRI value between year \(j\) and \(i\) under DTA (m/km)
- Rutting life with DTA Pavement design life based on the rutting model under DTA
- Rutting life with WBT Pavement design life based on the rutting model under NGWBT.

To account for seasonal effects, an average annual damage value is used. For all scenarios, tire types, market penetrations, base–subbase strengths, and traffic levels considered, the number of repetitions to failure is calculated; by dividing the cumulative traffic by the number of repetitions to failure, the annual damage value is calculated; and using Miner’s Rule, pavement design life (until the next rehabilitation is triggered) is computed.
5.2 RESULTS AND DISCUSSION

The results of the LCA analysis are shown per the functional unit. The discussion is only limited to the case for the strong base and the strong subbase; results of other base/subbase cases are included in Appendix G. This section is based on 100% axle with NGWBT; an example result of 50% axle with NGWBT is shown in Appendix H. The negative value in the following figures means the environmental savings whereas the positive value refers to the burdens.

5.2.1 Scenario 1: Same Fatigue and Rutting Potential Between DTA And NGWBT

Error! Reference source not found. presents the energy consumption and GWP for Scenario 1. For both low and high traffic levels, rehabilitation is triggered by IRI. The environmental impacts in material, construction, and maintenance stages remain the same because DTA and NGWBT have the same fatigue and rutting performance, but the only saving in this scenario comes from the lower fuel consumption of NGWBT, as seen in Error! Reference source not found.. The IRI regression used for the high traffic level is higher than that for the low traffic level, as seen in Appendix F.

![Figure 5-3. Energy consumption and GWP for Scenario 1 for (a) the low traffic level, and (b) the high traffic level (RR = rolling resistance induced by pavement roughness).](image)
5.2.2 Scenario 2: Different Fatigue Cracking Potential but Same Rutting Potential

As presented in Error! Reference source not found., the two traffic levels show different results in Scenario 2. For the low traffic level, pavement rehabilitation is triggered by IRI because the time to reach the fatigue cracking failure is much longer than the IRI threshold. Therefore, the LCA result for the low traffic level is the same as in Scenario 1 (Error! Reference source not found.). On the other hand, the design life of the pavement is primarily determined by the fatigue cracking potential for the high traffic level; therefore, the number of rehabilitation during the analysis period and pavement roughness progression are different for each market penetration of NGWBT. For example, for the 100% market penetration, more frequent rehabilitations cause increased environmental burdens in construction and maintenance stages, but reduced the impact from rolling resistance induced by roughness as presented in Error! Reference source not found..

![Figure 5-4. Energy consumption and GWP for Scenario 2 for the high traffic level.](image)

5.2.3 Scenario 3: Same Fatigue Cracking Potential but Different Rutting Potential

In this scenario, IRI is changing with the market penetration of NGWBT because IRI is proportional to the rutting potential. In other words, NGWBT has a higher rutting potential than the DTA, so NGWBT has a faster IRI progression. However, the difference in IRI progression between DTA and NGWBT is not very significant; only the small amount of additional impacts is added to the result for the low traffic level as shown in Error! Reference source not found.. For the high traffic level, rehabilitation takes place earlier in 100% market penetration so the impact from rolling resistance is relatively smaller than other market penetrations from a well-maintained pavement roughness as seen in Error! Reference source not found..

In summary, it is evident that the greater the NGWBT market penetration, the higher the fuel savings and, consequently, the fewer the emissions and greenhouse gases. However, this may vary depending on the scenario. Although in Scenario 2 more rehabilitation is expected due to increasing the NGWBT market penetration, smoother pavement is expected over the pavement life; this results in a reduced rolling resistance induced by roughness.
Figure 5-5. Energy consumption and GWP for Scenario 3 for (a) the low traffic level, and (b) the high traffic level.
CHAPTER 6: PAVEMENT DAMAGE AND DESIGN TOOL

As part of the study, a user-friendly tool was developed using visual basic to help in the implementation of the findings of this research. The initial interface of the New Brunswick Pavement Analysis Tool (NBPAT) is presented in Error! Reference source not found.. The names and usages of the tool subsections are as follow:

New Brunswick Pavement Analysis Tool (NBPAT) v1.0

![Tool interface](image)

Developed By:
Illinois Center for Transportation

Figure 6-1. Tool interface.

6.1 NEW BRUNSWICK PAVEMENT DAMAGE SECTION (NBPDAS)

NBPDAS is a combined DTA to NGWBT ratio calculator. Based on the season, base and subbase modulus, this tool can predict the total number of repetitions to failure for each of the four distresses considered in this study. In addition, the combined DTA to NGWBT ratio is also calculated. The inputs of this engine are the material properties of the base and subbase layer (MPa), and the season of interest (Fall, Winter, Spring or Summer). On the other hand, the outputs are the number of repetitions to failure for each tire configuration and pavement distress, and the combined DTA to NGWBT ratio.

6.2 NEW BRUNSWICK PAVEMENT EVALUATION SECTION (NBPEVS)

NBPEVS is a tool used for evaluating pavement sections. By providing base and subbase material properties and traffic information, the user can check if the section is adequate for the predefined
design life. This tool also helps in the optimization of base and subbase material selection since alternatives can be easily compared. Moreover, the effect of an increase in market penetration and percentage of axles with NGWBT can be assessed. The inputs of this section are the material properties of base and subbase layer (MPa), design life (years), market penetration (%), percentage of trucks using NGWBT, percentage of axles with NGWBT (%) for the trucks using NGWBT; percentage trucks (%); truck factor; traffic growth rate (%); directional AADT; and lane distribution factor. The output is composed by an adequate/not adequate check for the predefined design life with respect to the distresses considered.
CHAPTER 7: SUMMARY

The impact of NGWBT and DTA on representative pavement sections of New Brunswick, Canada, was studied using finite element method (FEM) analysis and life-cycle assessment. The finite element analysis included features representing material behavior and loading, usually overlooked in the conventional analysis of flexible pavement; the procedure adopted for its development has been validated with experimental measurements. In particular, loading assumption are particularly important when comparing NGWBT and DTA because the distribution of tire–pavement contact stresses is very different for each tire. Regarding environmental impact, global warming potential and energy consumption were obtained from the life-cycle assessment (LCA) in three scenarios depending on the cracking and rutting potential due to the loading by each tire.

Based on the results of both analysis, the following conclusions can be drawn:

- In general, NGWBT created greater critical pavement responses. The highest difference was seen on the near-surface responses (i.e., maximum shear strain in the AC). The difference between both tires became negligible for the maximum vertical strain on top of the subgrade, which is responsible for secondary rutting. The use of high quality and durable asphalt concrete (AC) can minimize this impact.
- Under realistic setting, it was found that pavement damage increased with NGWBT market penetration. For example, a market penetration of around 20% NGWBT can cause an increment of 6% in pavement damage for the cases studied. It has to be noted that traffic on the pavement studied is considered very low and hence the possible extra damage related to NGWBT could possibly be handled by the pavement structure.
- Savings in global warming potential and energy consumption due to NGWBT usage depended on market penetration (higher NGWBT market penetration resulted in higher environmental benefits; but possibly greater pavement damage).
- Steering wheel impact was not considered in this study and is expected to have significant impact on the pavement response. Hence, it is recommended that a full truck analysis be analyzed in the future.
REFERENCES

Bare, J. (2012). Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI, Version 2.1). [Software]. U.S. Environmental Protection Agency, Cincinnati, OH.

APPENDIX A: CRITICAL PAVEMENT RESPONSES

SECTION: WEAK BASE AND SUBBASE

Figure A-1. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right).

Figure A-2. Shear strain within AC layer.
SECTION: MEDIUM BASE AND SUBBASE

Figure A-3. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right).

Figure A-4. Shear strain within AC layer.
SECTION: MEDIUM BASE AND WEAK SUBBASE

Figure A-5. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right).

Figure A-6. Shear strain within AC layer.
Figure A-7. Tensile strain at the bottom of AC (left) and vertical strain on top of SG (right).

Figure A-8. Shear strain within AC layer.
APPENDIX B: TRANSFER FUNCTIONS

FATIGUE CRACKING

Number of repetitions to failure for the considered distresses was calculated using transfer functions implemented in MEPDG. The general equation to calculate fatigue cracking, either bottom-up or near-surface, is given by:

$$N_f = k_{f1} \times C \times C_H \times \beta_{f1}(\varepsilon_t)^{k_{f2} \beta_{f2}}(E)^{k_{f3} \beta_{f3}}$$ (B-1)

where $k_{f1, f2, f3}$ are global field calibration parameters (NCHRP 1-40D), ε_t is the tensile strain, $k_{f1} = 0.007566$, $k_{f2} = -3.9492$, $k_{f3} = -1.281$, $\beta_{f1, f2, f3}$ are local or field-mixture calibration constants (for global calibration, assume all to be 1.0), $C = 10^M$, and:

$$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$$ (B-2)

where V_b is the effective binder content (%) and V_a is the air voids (%). The parameter C_H is Eq. (B-1) depends on the type of fatigue being studied:

$$C_H(bottom \ up) = \frac{1}{0.000398 + \frac{0.003602}{1 + e^{(11.02 - 3.49H_{HMA})}}}$$ (B-3)

$$C_H(near \ surface) = \frac{1}{0.01 + \frac{12.00}{1 + e^{(15.676 - 2.816H_{HMA})}}}$$ (B-4)

where H_{HMA} is the AC thickness. Additionally, the tensile strain in Eq. (B-1) is defined by the specific type of fatigue cracking studied: tensile strain at the bottom of the AC for bottom-up fatigue cracking, and shear strain for near-surface fatigue cracking.

AC RUTTING

The allowable number of load applications needed for HMA rutting failure can be calculated using the following equation:

$$\Delta_{p(HMA)} = \varepsilon_{p(HMA)}h_{HMA} = \beta_{1r}k_z\varepsilon_{r(HMA)}10^{k_{1r}n^{k_{2r}\beta_{2r}}T^{k_{3r}\beta_{3r}}}$$ (B-5)

where $\Delta_{p(HMA)}$ is the accumulated permanent or plastic vertical deformation in the AC layer/sublayer in inches; $\varepsilon_{p(HMA)}$ is the accumulated permanent or plastic axial strain in the AC layer/sublayer; $\varepsilon_{r(HMA)}$ is the resilient or elastic strain calculated by the structural response model at the mid-depth of each HMA sublayer, in/in; h_{HMA} is the thickness of the AC layer/sublayer, in inches; n is the number of axle load repetitions, T is the pavement temperature in Fahrenheit degrees; k_z is the depth confinement factor; $k_{1r, 2r, 3r}$ are global field
calibration parameters (from the NCHRP 1-40D recalibration); $k_{1r} = -3.35412$, $k_{2r} = 0.4791$, $k_{3r} = 1.5606$; $\beta_{1r,2r,3r}$ are local or mixture field calibration constants; for the global calibration, these constants were all set to 1.0. At the same time:

\[
\begin{align*}
 k_z & = (C_1 + C_2D)0.328196^D \\
 C_1 & = -0.1039(h_{HMA})^2 + 2.4868h_{HMA} - 17.342 \\
 C_2 & = -0.0172(h_{HMA})^2 - 1.7331h_{HMA} + 27.428
\end{align*}
\]

(B-6)

(B-7)

(B-8)

where D is the depth below the surface in inches.

SUBGRADE RUTTING

According to MEPDG, the total number of repetition to failure to create subgrade rutting failure is calculated as follows:

\[
N_r = 1.365 \times 10^{-9}(\varepsilon_v)^{-4.477}
\]

(B-9)

where N_r is the allowable number of axle load repetitions for subgrade rutting failure and ε_v is the maximum vertical strain on top of subgrade.
APPENDIX C: DAMAGE RATIOS

Figure C-1 Damage ratio for considered distresses, seasons, and weak base and subbase.

Figure C-2 Damage ratio for considered distresses, seasons, and medium base and subbase.
Figure C-3. Damage ratio for considered distresses, seasons, and medium base and weak subbase.

Figure C-4. Damage ratio for considered distresses, seasons, and medium base and strong subbase.
APPENDIX D: LCI INFORMATION FOR MATERIAL AND CONSTRUCTION STAGES

Table D-1. Data Sources for Material and Construction Stages

<table>
<thead>
<tr>
<th>Material</th>
<th>Sources</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight binder</td>
<td>Meli (2006)</td>
<td></td>
</tr>
<tr>
<td>Crushed rock</td>
<td>Earthshift (2013)</td>
<td>US-Ecoinvent 2.2; Limestone, crushed, for mill/US* US-EI U</td>
</tr>
<tr>
<td>Crushed gravel</td>
<td>Earthshift (2013)</td>
<td>US-Ecoinvent 2.2; Gravel, crushed, at mine/US* US-EI U</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>Meli (2006)</td>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>US EPA MOVES 2014a</td>
<td></td>
</tr>
<tr>
<td>Reclaimed asphalt pavement (RAP)</td>
<td>Meli (2006)</td>
<td></td>
</tr>
<tr>
<td>HMA plant</td>
<td>Meli (2006)</td>
<td></td>
</tr>
</tbody>
</table>

Table D-2. AC Mix Design Information

<table>
<thead>
<tr>
<th>Material</th>
<th>Recycled Asphalt Content (%)</th>
<th>Amount (% Mix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed stone</td>
<td>0.0</td>
<td>47.7</td>
</tr>
<tr>
<td>Crushed gravel</td>
<td>0.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>0.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Recycled asphalt pavement</td>
<td>6.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Straight binder</td>
<td>0.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table D-3. Mix Design Volumetrics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gmb (g/cm³)</td>
<td>2.527</td>
</tr>
<tr>
<td>Gmm (g/cm³)</td>
<td>2.619</td>
</tr>
<tr>
<td>Voids (%)</td>
<td>3.5</td>
</tr>
<tr>
<td>Asphalt content (%)</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Table D-4. Specific Gravity and Modulus of Granular Materials

<table>
<thead>
<tr>
<th>Granular Materials</th>
<th>Specific Gravity</th>
<th>Modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed rock</td>
<td>2.815</td>
<td>132</td>
</tr>
<tr>
<td>Crushed gravel</td>
<td>2.815</td>
<td>132</td>
</tr>
<tr>
<td>Glacial till</td>
<td>2.72</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
<th>Amount (% mix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed stone</td>
<td>CS</td>
<td>47.7</td>
</tr>
<tr>
<td>Crushed gravel</td>
<td>CG</td>
<td>32</td>
</tr>
<tr>
<td>Fine aggregate</td>
<td>FA</td>
<td>5.3</td>
</tr>
<tr>
<td>Mineral filler</td>
<td>MF</td>
<td>0</td>
</tr>
<tr>
<td>Default Recycled Asphalt Pavement</td>
<td>CAT 1 FINE</td>
<td>15</td>
</tr>
<tr>
<td>Straight binder</td>
<td>PG76-22</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table D-5. Baseline Pavement Rehabilitation Schedule for High Traffic Level (Analysis Period: 48 Years)

<table>
<thead>
<tr>
<th>Year</th>
<th>Mainline activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Reconstruction</td>
</tr>
<tr>
<td>2028</td>
<td>2.0 in (5.0 cm) mill and overlay & 2.0% partial depth patching</td>
</tr>
<tr>
<td>2042</td>
<td>2.0 in (5.0 cm) mill and 2.25 in (5.7 cm) overlay & 2.0% partial depth patching</td>
</tr>
<tr>
<td>2056</td>
<td>2.0 in (5.0 cm) mill and 2.25 in (5.7 cm) overlay & 2.0% partial depth patching</td>
</tr>
</tbody>
</table>

Table D-6. Baseline Pavement Rehabilitation Schedule for Low Traffic Level (Analysis Period: 48 Years)

<table>
<thead>
<tr>
<th>Year</th>
<th>Mainline activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Reconstruction</td>
</tr>
<tr>
<td>2030</td>
<td>2.0 in (5.0 cm) mill and overlay & 2.0% partial depth patching</td>
</tr>
<tr>
<td>2046</td>
<td>2.0 in (5.0 cm) mill and 2.25 in (5.7 cm) overlay & 2.0% partial depth patching</td>
</tr>
</tbody>
</table>
APPENDIX E: ASPHALT INSTITUTE TRANSFER FUNCTIONS

Transfer functions from the Asphalt Institute (AI) were used to compute the number of repetition for each failure criteria. The result of using MEPDG transfer functions is used primarily for fatigue cracking progression so the AI transfer functions were used to determine the number of repetitions to failure in this study.

Bottom-up fatigue cracking

\[
N_f = 0.0795 \times C \varepsilon_t^{-3.291} |E^*|^{-0.854}
\]

(E-1)

\[
C = 10^{4.84(\frac{V_b}{V_a+V_b}-0.69)}
\]

(E-2)

where: \(N_f\): maximum allowed repetition
\(C\): correction factor
\(V_a\): volume of asphalt in the mix
\(V_b\): volume of air in the mix
\(\varepsilon_t\): tensile strain; and
\(|E^*|\): stiffness (dynamic modulus) of asphalt in units of psi.

Subgrade rutting

\[
N_d = 1.365 \times 10^{-9} (\varepsilon_c)^{-4.447}
\]

(E-3)

where: \(N_d\): maximum number of axle loads to the rut depth failure criteria (0.5-in rut depth)
\(\varepsilon_c\): vertical compressive strain on top of the subgrade
APPENDIX F: ROUGHNESS PROGRESSION

Only one case for different traffic level and another for market penetration are shown here because other base–subbase combinations show more or less the same trend in the IRI progression. “SS” refers to strong base and strong subbase in the following figures.

Figure F-1. Comparison of IRI progression for high and low traffic levels based on Scenario 3 SS (Starting Year = 2014).

Figure F-2. Progression of IRI progression for 0% and 100% NGWBT market penetration based on Scenario 3 SS and the high traffic level (Starting Year = 2014).
Figure F- 3. Comparison of IRI progression for 0% and 100% NGWBT market penetration based on Scenario 3 SS and the low traffic level (Starting Year = 2014).
APPENDIX G: LCA RESULTS FOR DIFFERENT BASE/SUBBASE STRENGTHS

ENERGY CONSUMPTION AND GWP FOR THE LOW TRAFFIC LEVEL

From Figure G-1 to Figure G-4, the impact of material, construction, maintenance, and rolling resistance is constant regardless of the strength of base and subbase; however, the fuel savings from NGWBT are changing with respect to market penetration. From Figure G-5 to Figure G-8, the impact of each life-cycle stage and rolling resistance changes with the IRI progression, which triggers pavement rehabilitation at slightly different time; therefore, the result of LCA analysis varies slightly with different base and subbase strengths ("WW", "MM", "MW", and "MS" refer to “weak base & weak subbase”, “medium base & medium subbase”, “medium base & weak subbase”, and “medium base & strong subbase”, respectively in the following figures).

Figure G-1. Energy consumption and GWP for Scenarios 1 & 2 WW based on the low traffic level.

Figure G-2. Energy consumption and GWP for Scenarios 1 & 2 MM based on the low traffic level.
Figure G- 3. Energy consumption and GWP for Scenarios 1 & 2 MW based on the low traffic level.

Figure G- 4. Energy consumption and GWP for Scenarios 1 & 2 MS based on the low traffic level.

Figure G- 5. Energy consumption and GWP for Scenario 3 WW based on the low traffic level.

Figure G- 6. Energy consumption and GWP for Scenario 3 MM based on the low traffic level.
Figure G- 7. Energy consumption and GWP for Scenario 3 MW based on the low traffic level.

Figure G- 8. Energy consumption and GWP for Scenario 3 MS based on the low traffic level.

ENERGY CONSUMPTION AND GWP FOR THE HIGH TRAFFIC LEVEL

From Figure G- 9 to Figure G- 12, similar to the low traffic level, the impact of material, construction, maintenance, and rolling resistance remains the same but the fuel saving from NGWBT changes with NGWBT market penetration. Figure G- 13 through Figure G- 16 indicates that pavement rehabilitation is triggered primarily by the bottom-up fatigue cracking. At higher market penetration of NGWBT, the pavement life significantly decreases so more frequent rehabilitations are applied during the analysis period; this increases the burden from material production and equipment operation but significantly reduces the impact of rolling resistance because the roughness level is kept lower from frequent rehabilitations. In Figure G- 17 through Figure G- 20, pavement rehabilitation is triggered by IRI. Since rutting potential influences IRI progression, at higher market penetration, rehabilitation is triggered slightly earlier, resulting in the reduction of the overall pavement roughness during the analysis period. This causes a reduction in the impact of rolling resistance at higher market penetration. For all cases, the fuel savings from using NGWBT are considered (“WW”, “MM”, “MW”, and “MS” refer to “weak base & weak subbase”, “medium base & medium subbase”, “medium base & weak subbase”, and “medium base & strong subbase”, respectively in the following figures).
Figure G-9. Energy consumption and GWP for Scenario 1 WW based on the high traffic level.

Figure G-10. Energy consumption and GWP for Scenario 1 MM based on the high traffic level.

Figure G-11. Energy consumption and GWP for Scenario 1 MW based on the high traffic level.

Figure G-12. Energy consumption and GWP for Scenario 1 MS based on the high traffic level.
Figure G-13. Energy consumption and GWP for Scenario 2 WW based on the high traffic level.

Figure G-14. Energy consumption and GWP for Scenario 2 MM based on the high traffic level.

Figure G-15. Energy Consumption and GWP for Scenario 2 MW based on the high traffic level.

Figure G-16. Energy consumption and GWP for Scenario 2 MS based on the high traffic level.
Figure G- 17. Energy consumption and GWP for Scenario 3 WW based on the high traffic level.

Figure G- 18. Energy consumption and GWP for Scenario 3 MM based on the high traffic level.

Figure G- 19. Energy consumption and GWP for Scenario 3 MW based on the high traffic level.

Figure G- 20. Energy consumption and GWP for Scenario 3 MS based on the high traffic level.
APPENDIX H: SENSITIVITY ANALYSIS BASED ON PERCENTAGE AXLES EQUIPPED WITH NGWBT

For 50% axle with NGWBT, as small trucks have only one axle to be equipped with NGWBT, 0% axle with NGWBT is assumed. For medium and high trucks, 50% axle with NGWBT is assumed; one axle in medium trucks and two axles in heavy trucks are equipped with NGWBT. For 100% axle with NGWBT, all axles except for driving axle are equipped with NGWBT. “SS” refers to “strong base and strong subbase” in the following figures.

Figure H-1. Comparison of energy consumption for: 50% (left) and 100% (right) axle with NGWBT based on Scenarios 1 & 2 SS and the low traffic level.

Figure H-2. Comparison of energy consumption for: 50% (left) and 100% (right) axle with NGWBT based on Scenario 3 SS and the low traffic level.
Figure H-3. Comparison of energy consumption for (a) 50% and (b) 100% axle with NGWBT based on Scenario 1 SS and the high traffic level.

Figure H-4. Comparison of energy consumption for 50% (left) and 100% (right) axle with NGWBT based on Scenario 2 SS and the high traffic level.

Figure H-5. Comparison of energy consumption for 50% (left) and 100% (right) axle with NGWBT based on Scenario 3 SS and the high traffic level.