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EXECUTIVE SUMMARY 

Federal regulations (23 CFR 630 Subpart J, 23 CFR 630 Subpart K) place emphasis on smart work zone 
technologies within and around work zones to improve safety and mobility. Given the increasing 
number of smart work zone deployments, cross-studies have been performed to summarize the lessons 
learned, and work zone implementation guidelines were recently published by the Federal Highway 
Administration (FHWA) to assist departments of transportation (DOTs) in determining the feasibility and 
design of smart work zones for a given application.  

Two critical components for the success of a smart work zone deployment are the quality of the traffic 
data collected by sensor networks and the algorithms used for data processing, which, when combined, 
provide real-time traffic information in the work zone. Accurate and reliable traffic estimation is the 
basis for many smart work zone systems regardless of the specific application. For example, the 
effectiveness of a portable changeable message sign (PCMS) is reduced if the message does not 
accurately correspond to current traffic conditions. Therefore, the accuracy of the traffic estimation can 
be regarded as a critical metric for the potential effectiveness of smart work zones.  

Using the estimation accuracy as a metric of the potential effectiveness of work zones, this study 
focuses on quantitatively evaluating a large variety of sensor network configurations and traffic 
estimation algorithms in microsimulation to obtain insights on best practices for designing smart work 
zone systems. Two work zones located on I-80 in Will County and I-57 in Jefferson County were 
modeled and calibrated with field data in the microsimulation environment. Dedicated sensor error 
models were developed to generate realistic measurements corresponding to Doppler radar sensors 
(radar), remote traffic microwave sensors (RTMS), and low-energy radar (LER).  

To assess the importance of algorithms for the estimation accuracy of the velocity, queue length, and 
travel time, three algorithms with different levels of sophistication were implemented: (1) spatial 
interpolation used in practice, (2) spatio-temporal filtering, which integrated a smoothing component in 
the temporal horizon, (3) and a traffic flow modelςbased nonlinear Kalman filter. To identify the critical 
factors on the sensor network design in a smart work zone, 242 different configurations of sensor 
networks were quantitatively assessed, each with three algorithms that varied in the number and 
spacing of sensors, the type of sensors, and the accuracy of individual sensors. 

In summary, this study assessed 726 combinations of sensor network configurations and traffic 
estimation algorithms. The main findings are as follows: 

¶ The spacing of sensors is an important factor for improving the accuracy of traffic estimation, 
especially at a large sensor spacing (e.g., 1 mile). When the sensor spacing is smaller than 0.5 
mile, the benefit of additional sensors or the choice of algorithm is marginal (i.e., less than 5% 
improvement per sensor). 

¶ The nonlinear Kalman filter generally provides significantly more-accurate estimation of the 
velocity, the queue length, and the travel time compared with other algorithms when the 
spacing of sensors exceeds 1 mile. It has the potential to reduce the cost of the existing sensors 
by approximately 50% while achieving the same level of traffic estimation accuracy. However, 
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the performance of the nonlinear Kalman filter relies on the appropriate selection of algorithmic 
parameters, which requires field data collection and expertise to apply the technique. 

¶ The RTMS provides more-accurate flow measurements than radar and LER because of its less 
prominent occlusion issue. The accurate flow measurement can significantly improve the 
estimation accuracy of the nonlinear Kalman filtering algorithm. The spatial interpolation and 
the spatio-temporal filtering algorithms use velocity measurements only; hence, they have less 
accuracy variation across three types of sensors. In the cost accuracy analysis, the radar sensors 
are the most cost effective for estimating the velocity and queue length. At the same system 
cost, the additional number of radar sensors (a lower unit price allows more to be installed) 
provides higher improvement of the estimation accuracy than using more-accurate but fewer 
RTMS. It should be noted that the cost accuracy analysis was conducted based on limited cost 
data. It is recommended that the cost accuracy be re-assessed, given the updated cost data for 
each specific deployment. 

¶ Existing sensor technologies are sufficient for good performance across all algorithms 
considered, and little additional benefit can be expected from improvements of the quality of 
individual sensors because measurement error is dominated by the quantization error and 
errors related to occlusion (for radar and LER). This finding is based on the assumption that all 
sensors are properly calibrated to achieve the error magnitudes as specified by the sensor 
manufacturer specification and operate reliably. More benefit can be achieved by improving the 
reliability of sensors instead of increasing individual sensor accuracy. This conclusion is made 
based on the rate of significant missing data during congestion in the field dataset in a work 
zone where no traffic estimation algorithm can produce accurate traffic estimates. 

¶ All classes of implemented algorithms perform relatively poorly on travel time estimation owing 
to the use of the instantaneous travel time estimation scheme. The use of Bluetooth sensors will 
not improve travel time estimation accuracy when the travel times are quickly changing. This is 
because the sensors only record the travel time of the vehicle that just completed the trip, 
which may no longer be a good estimate of the travel time of the vehicle just entering the 
stretch of roadway. Analytics with the capability of travel time prediction for smart work zone 
monitoring systems are recommended to obtain a better travel time estimation. 

The findings in this study are intended to 

¶ Help DOTs in their decision-making process regarding the acquisition of smart work zone 
systems. 

¶ Assist vendors working with state DOTs on the development of improved systems for smart 
work zones. 

All source code developed in this study can be found at https://github.com/Lab-Work/ IDOT-
SmartWorkzone. 

  

https://github.com/Lab-Work/IDOT-SmartWorkzone
https://github.com/Lab-Work/IDOT-SmartWorkzone
https://github.com/Lab-Work/IDOT-SmartWorkzone


iv 

CONTENTS 

CHAPTER 1: INTRODUCTION .............................................................................................................. 1 

1.1 OBJECTIVE OF THE STUDY ......................................................................................................... 1 

1.2 METHODOLOGY ........................................................................................................................ 2 

1.3 ORGANIZATION OF THE REPORT ............................................................................................... 3 

CHAPTER 2: LITERATURE REVIEW OF SMART WORK ZONES ................................................................ 5 

2.1 REPRESENTATIVE SMART WORK ZONE DEPLOYMENTS .............................................................. 5 

2.1.1 Real-Time Traveler Information System ............................................................................ 5 

2.1.2 Queue Warning and Detection System ............................................................................. 6 

2.1.3 Dynamic Lane Merge System ............................................................................................ 7 

2.1.4 Incident Management System .......................................................................................... 8 

2.1.5 Variable Speed Limit System............................................................................................. 8 

2.1.6 Automated Speed Enforcement System ............................................................................ 9 

2.1.7 Performance Measurement System .................................................................................. 9 

2.2 ASSESSMENTS AND GUIDELINES OF SMART WORK ZONES ...................................................... 10 

2.3 SUMMARY OF LITERATURE REVIEW ........................................................................................ 11 

CHAPTER 3: CONSTRUCTION OF A VIRTUAL TESTBED IN MICROSIMULATION.................................... 13 

3.1 SELECTION OF WORK ZONE SITES ............................................................................................ 13 

3.2 ANALYSIS OF FIELD DATA ........................................................................................................ 16 

3.2.1 Data Description ............................................................................................................ 16 

3.2.2 Data Analysis Findings .................................................................................................... 17 

3.2.3 Summary of Data Analysis .............................................................................................. 20 

3.3 MODELING OF WORK ZONES .................................................................................................. 21 

3.4 CALIBRATION OF WORK ZONES ............................................................................................... 24 

3.4.1 Literature Review on Calibration of Microsimulation Models .......................................... 24 

3.4.2 Automated Calibration Framework ................................................................................ 26 

3.4.3 Calibration Results of Two Work Zones ........................................................................... 27 

3.5 SENSOR MODELS .................................................................................................................... 28 

3.5.1 Overview of Sensor Types .............................................................................................. 28 

3.5.2 Generation of Noisy Measurements ............................................................................... 29 

CHAPTER 4: TRAFFIC ESTIMATION ALGORITHMS .............................................................................. 31 

4.1 SPATIAL INTERPOLATION ........................................................................................................ 31 

4.2 SPATIO-TEMPORAL FILTERING ................................................................................................ 31 

4.3 KALMAN FILTER ...................................................................................................................... 32 

4.4 BACK OF QUEUE AND TRAVEL TIME ESTIMATION .................................................................... 33 



v 

CHAPTER 5: COMPARATIVE ANALYSIS .............................................................................................. 35 

5.1 TRAFFIC ESTIMATION ERROR METRICS .................................................................................... 35 

5.2 ALGORITHMS AND SENSOR SPACINGS .................................................................................... 37 

5.3 TYPE OF SENSORS ................................................................................................................... 39 

5.4 ACCURACY OF SENSORS .......................................................................................................... 40 

5.5 COST ACCURACY ANALYSIS ..................................................................................................... 43 

CHAPTER 6: SUMMARY AND CONCLUSIONS ..................................................................................... 47 

REFERENCES .................................................................................................................................... 52 

APPENDIX A: CALIBRATION PROCEDURE .............................................................................. 61 

APPENDIX B: DATA QUALITY ANALYSIS ........................................................................................... 69 

APPENDIX C: IMPLEMENTATION OF ALGORITHMS ........................................................................... 77 

APPENDIX D: COMPLETE EVALUATION RESULTS ............................................................................... 83 

 

 

 

 

 

 





1 

CHAPTER 1: INTRODUCTION  

1.1 OBJECTIVE OF THE STUDY  

Smart work zones aim to improve work zone safety and mobility through the integration of traffic 
sensors, estimation algorithms, and traffic management strategies. As illustrated in Figure 1.1, a 
smart work zone [1] normally consists of (1) a sensor network to measure current traffic conditions in 
and around the work zone; (2) a data processing algorithm to process the raw data and estimate 
work zone quantities of interest (e.g., the back of the queue, the average velocity in the work zone); 
(3) output devices that disseminate traffic information to the appropriate consumer (e.g., drivers or 
departments of transportation) depending on the application; and (4) a communication network that 
connects the individual components. 

 
 

Figure 1.1: Architecture of smart work zones. This study focuses  
on the assessment of network configurations and data processing  
algorithms for estimating velocity, queue length, and travel time. 

Smart work zones have been deployed in a variety of applications, such as the provision of real-time 
traveler information [2, 3, 4], back-of-queue warnings [5, 6], and traffic management [7, 8, 9]. Many 
qualitative and quantitative benefits of smart work zones are reported from field deployments, such 
as a reduction in aggressive maneuvers and crashes [3, 10, 11], smoothed merging activities [7, 12], 
reduced speeding [7, 13], increased throughput [7], and reduced delay [14, 15].  

Given the increasing number of smart work zone deployments, cross-studies have been performed to 
summarize the lessons learned and the benefits of each smart work zone [10, 11, 16, 17]. Recently, 
the Federal Highway Administration (FHWA) published work zone implementation guidelines [1] to 
determine the feasibility and design of a work zone intelligent transportation system (ITS) for a given 
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application. The guidelines also report that trade-offs typically exist between the number and type of 
work zone components, but the guidelines lack a quantitative assessment of the trade-offs. A main 
reason for the knowledge gap is the difficulty of collecting detailed performance data from a large 
number of configurations in an active work zone. 

Regardless of the application, the effectiveness of smart work zones relies on accurate and reliable 
estimates of traffic conditions (e.g., traffic velocity, the back of queue, and the travel time). For 
example, the estimated traffic conditions that are used to produce safety-critical messages on 
portable changeable message signs (PCMS) must be accurate and credible to be effective [18]. 
Therefore, the estimation accuracy of the traffic condition can be used as a metric for the potential 
effectiveness of smart work zones, which circumvents the time-consuming collection of performance 
data for mobility and safety. 

The main objective of this study is to identify the key factors for improving the estimation accuracy, 
by evaluating a large number of smart work zone configurations in a microsimulation environment. 
Specifically, the objectives are as follows: 

¶ To develop and calibrate a microsimulation environment for the simulation of a large number 
of smart work zone configurations, which vary in the number and spacing of sensors, types of 
sensors, and accuracy of individual sensors. 

¶ To review and implement a variety of algorithms for estimating the traffic velocity, queue 
length, and travel time, including a spatial interpolation algorithm, a spatio-temporal filter 
that incorporates the temporal dynamics of traffic, and a state-of-the-art nonlinear Kalman 
filter. 

¶ To quantitatively assess the influence of the number and spacing of sensors, the type of 
sensors, the accuracy of sensors, and the traffic estimation algorithms on traffic estimation 
accuracy to help determine the potential effectiveness of smart work zones. 

1.2 METHODOLOGY  

This study uses a microsimulation environment to simulate a large number of smart work zone 
configurations and traffic estimation algorithms. The developed framework is illustrated in Figure 1.2. 
The framework consists of the following key components: 

¶ A microscopic traffic simulation software, AIMSUN, is used to model the work zones, simulate 
the traffic at the level of individual vehicle movements, and generate detailed trajectory data 
at a 0.2 second granularity for each vehicle. The microsimulation model is calibrated using 
field data to reproduce similar traffic statistic as observed in the field. 

¶ To investigate the influence of types of sensors and the accuracy of individual sensors, 
dedicated sensor error models are developed that can generate realistic sensor 
measurements from the trajectory data. Three types of commonly used sensors are modeled 
in this study, namely, remote traffic microwave sensor (RTMS), Doppler radar (radar), and 
low-energy radar (LER, an example of which is iCone®). 
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¶ Three algorithms are implemented to estimate the traffic condition. The algorithms are 
representative of the (1) spatial interpolation approaches often used in practice by state 
departments of transportation (DOTs), (2) spatial-temporal filtering algorithms that can 
incorporate the temporal dynamics of traffic, and (3) nonlinear Kalman filtering methods 
conventionally applied on highways outside of work zone environments [19, 20] by the 
research community. The algorithms directly estimate the traffic velocity, from which the 
length of the queue and the travel time could be computed. 

¶ Finally, true states are obtained from the trajectory data for computing the estimation error 
of the velocity, queue length, and travel time. 

In total, more than 700 smart work zone deployments were simulated for assessing the importance 
of the number and spacing of sensors, the types of sensors, the accuracy of individual sensors, and 
the estimation algorithms. 

 
 

Figure 1.2: Framework for the evaluation of  
various sensor network configurations and algorithms. 

1.3 ORGANIZATION OF THE REPORT  

The remainder of this report is organized as follows.  

Chapter 2 summarizes representative smart work zone deployments, existing work zone summary 
reports, and guidelines for smart work zones. The literature review identifies a lack of a 
comprehensive, quantitative, and comparative analysis on the design of smart work zones, which 
motivates this study. 
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Chapter 3 documents the development of a virtual testbed in the microsimulation environment. Two 
work zones in Illinois, on I-80 and I-57, were modeled and calibrated in the microsimulation 
environment. Prior to the calibration of work zones, an analysis of the field data was conducted. The 
data quality analysis revealed data incompleteness and inconsistency issues, which presented 
challenges for the calibration of the two work zones. The developed sensor models for RTMS, radar, 
and LER are described in the last subsection. 

Chapter 4 reviews the traffic estimation algorithms and describes the implementation of 
representative algorithms in three categories with different levels of sophistication. The algorithms 
are based on spatial interpolation, spatio-temporal filtering, and a nonlinear Kalman filter. 

Chapter 5 presents the evaluation results and summarizes the impact of each factor on estimation 
accuracy of traffic conditions. Based on the analysis results, a cost-effectiveness analysis was 
conducted. 

Chapter 6 summarizes the main findings of this study on the design of smart work zones. 
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CHAPTER 2: LITERATURE REVIEW OF SMART WORK ZONES  

A large number of studies have been conducted to summarize the benefits, lessons learned, and 
guidelines for implementing smart work zones. The objective of the literature review in this study is to 
summarize a list of available resources that can be used as references in the strategic design of smart 
work zones. The literature review places more emphasis on the detailed configuration of the deployed 
sensor network, as opposed to system-level implementation strategies. Section 2.1 focuses on 
representative smart work zone deployments and summarizes the lessons learned in case studies. Section 
2.2 reviews existing works on the cross-cutting assessment and summarizes existing meta-studies for 
smart work zones. 

2.1 REPRESENTATIVE SMART WORK ZONE DEPLOYMENTS  

Smart work zone technologies can be applied to achieve a variety of goals. According to the work 
zone implementation guide [21] by FHWA, smart work zones can be classified as follows: 

¶ Real-time traveler information systems that provide congestion, delay, and alternative route 
information to motorists. 

¶ Queue warning systems, which provide warnings to motorists about stopped or slow traffic to 
reduce the risk of rear-end collisions. 

¶ 5ȅƴŀƳƛŎ ƭŀƴŜ ƳŜǊƎŜ ǎȅǎǘŜƳǎΣ ǿƘƛŎƘ ŘȅƴŀƳƛŎŀƭƭȅ ƛƴǎǘǊǳŎǘ ǘƘŜ ƳƻǘƻǊƛǎǘǎΩ ƳŜǊƎŜ actions to 
smooth merge maneuvers based on the traffic condition. 

¶ Incident management systems, which detect the occurrences of incidents for quick response. 

¶ Variable speed limit systems, which dynamically adjust the speed limit to smooth traffic 
through work zones. They aim to improve mobility and/or safety. 

¶ Automated enforcement systems, which detect speeding vehicles and enforce the speed 
compliance of motorists. 

¶ Performance measurement systems, which evaluate the impact of the work zone based on 
quantitative measures, such as the induced travel delay and the length of developed queues. 

This section summarizes a representative subset of smart work zone deployments in each of the 
above categories.  

2.1.1 Real-Time Traveler Information System  

A real-time traveler information system provides traffic information to motorists, which may include 
the travel time or delay, the queue length, or reroute information. Two representative real-time 
traveler information systems are summarized next. A comprehensive review of real-time traveler 
information systems can be found in [22]. 
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Automated Portable Real-Time Traffic Control Systems, Illinois, 2001ς2002 [4] 

¶ Objective: The primary goal of the deployed system was to estimate and disseminate the 
travel delay time to motorists via portable dynamic message signs (PDMS) and the Illinois 
Department of Transportation (IDOT) website. The secondary goal of the system was to 
provide congestion and incident detection alerts to IDOT staff. 

¶ System configuration: The system was deployed on both the northbound and southbound 
approaches to the work zone, covering approximately 40 miles of I-55. Eight portable X-Band radar 
units were used to measure the vehicle speed and presence data. Four portable closed circuit 
television (CCTV) cameras were deployed to identify possible incidents detected by the radar 
sensors. Seventeen remotely controlled PDMS were used to disseminate delay and lane closure 
advisories. 

¶ Reported benefits: Overall, no significant traffic backups occurred while the system was in 
place. IDOT officials άwere satisfied with the performance.έ However, owing to the lack of 
άōŜŦƻǊŜέ ŀƴŘ άŀŦǘŜǊέ ŘŀǘŀΣ ƴƻ ǉǳŀƴǘƛǘŀǘƛǾŜ ōŜƴŜŦƛǘ ƻŦ ǘƘŜ ǎȅǎǘŜƳ ǿŀǎ ǊŜǇƻǊǘŜŘΦ 

Automated Work Zone Information System, Arkansas, 2000 [3] 

¶ Objective: The main objective of the system was to provide traffic information regarding the 
length of the queue to assist travelers in making routing decisions. The delay time was not 
provided to travelers because of the potential for inaccurate estimates. However, the system 
could provide faster incident response. 

¶ System configuration: Twelve RTMS were deployed over 7 miles to measure the traffic speed, 
volume, and occupancy. The traffic information was disseminated by five PDMS covering 9 
miles, three highway advisory radios (HARs) covering 23 miles, and the project website. 

¶ Reported benefits: The system was reported to have improved construction project 
productivity by adjusting construction activity schedules to avoid the identified peak traffic 
periods. Improved incident response was also noted. It was observed that 90% of the PDMS 
messages matched the actual conditions. TƘŜ ŦƛŜƭŘ ŜƴƎƛƴŜŜǊ ǎǘŀǘŜŘΣ άThe system worked well 
and appeared to be effective in preventing and reducing rear-end collisions and enhancing 
ŎƻƴƎŜǎǘƛƻƴ ƳŀƴŀƎŜƳŜƴǘέ ώ3]. 

2.1.2 Queue Warning and Detection System  

Queue warning and detection systems estimate the location of the back of the queue and disseminate 
warning messages to approaching motorists. A comprehensive review on the practices of queue warning 
systems is available in [5], which found that the most notable benefit of the deployment of queue warning 
systems is the reduction of rear-end crashes. This section summarizes two representative deployments of 
queue warning systems. More deployments of queue warning systems can be found in [23, 24, 25]. 

I-57/I-64 Queue Warning System, Illinois, 2011ς2013 [6] 

¶ Objective: The main goal of the system was to detect and warn approaching traffic about 
slow-moving or stopped traffic. 
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¶ System configuration: Thirty-two LER-based iCone® devices were deployed at approximately 1 
mile spacings to measure the speed of traffic. Fifteen PCMS were used to disseminate the 
queue information. 

¶ Reported benefits: No quantitative benefits were reported owing to the lack of data before 
deployment of the system. It was reported, however, that άǇǊƻƧŜŎǘ ǎǘŀŦŦ ... believed the 
system was ƘŜƭǇŦǳƭ ƛƴ ǊŜŘǳŎƛƴƎ ǉǳŜǳŜǎ ŀƴŘ ƳŀƴŀƎƛƴƎ ǘǊŀŦŦƛŎέ ώ6]. 

I-35 End-of-Queue Warning System, Texas, 2013 [26, 27] 

¶ Objective: The main goal of this system, which is currently in operation, is to detect and 
predict the formation of queues and warn motorists of slow and stopped traffic ahead [28]. 

¶ System configuration: The project is expected to be completed in 2018. Currently, the system 
consists of 17 RTMS for measuring the traffic speed, volume, and vehicle classification; 40 
pairs of Bluetooth sensors for detecting the travel time; six CCTV cameras for traffic 
surveillance; and 10 PCMS for disseminating traffic information [29]. 

¶ Reported benefits: No quantitative benefit is currently reported. 

2.1.3 Dynamic Lane Merge System  

Dynamic lane merge systems aim to smooth the flow of traffic through the work zone by regulating 
merge movements based on traffic conditions. The effectiveness of dynamic lane merge system was 
evaluated in [8]. It was reported that the average delay per vehicle to pass through the work zone 
and the number of aggressive driving maneuvers decreased with the deployment of a dynamic lane 
merge system. Two representative dynamic lane merge systems are summarized below. 

Dynamic Lane Merge System, Michigan, 2002ς2003 [7] 

¶ Objective: The goals of the system included reducing aggressive driving at the merge point, 
maximizing available capacity, and enhancing traveler safety. 

¶ System configuration: Five dynamic lane merge trailers were deployed upstream of the work 
zone at a spacing of 1,500 feet. Each trailer consisted of an RTMS for measuring the traffic 
speed, volume, and occupancy, and a dynamic sign for posting merge instructions to travelers. 

¶ Reported benefits: Quantitative benefits were presented in a Michigan DOT report [30]. The 
average number of stops in the work zone decreased from 1.75 to 0.96, and the travel time 
delay decreased from 95 seconds to 69 seconds during the morning peak period. The average 
travel speed increased from 40 mph to 46 mph during the morning peak period. In addition, 
the average number of aggressive driving maneuvers decreased from 2.88 to 0.55 during the 
afternoon peak period, which consequently improved the safety. 

Simplified Dynamic Lane Merge System (SDLMS), Florida, 2008 [8] 

¶ Objective: The primary goal was to regulate the merge movements depending on the traffic 
conditions to increase capacity and safety using a simplified lane merge system for short-term 
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movable work zones. A secondary goal was to quantitatively assess the effectiveness of 
simplified dynamic lane merge system using field data. 

¶ System configuration: RTMS were used to collect the volume, speed, occupancy, and vehicle 
classification data at the merging points, while PCMS were used to display proper merging 
instructions. 

¶ Reported benefits: A significant increase of the work zone capacity from 881 vehicles/hour to 
970 vehicles/hour using the early-merge system SDLMS was observed. Using the late-merge 
strategy, the capacity increased from 881 vehicles/hour to 896 vehicles/hour, which was not 
statistically significant. In general, the early-merge SDLMS performs better at low traffic 
volume and worse at high traffic volume than the late-merge SDLMS. 

2.1.4 Incident Management System  

Incident management systems automatically detect the occurrence and location of the incidents for 
quick traffic control response to mitigate the safety and congestion issues caused by the incidents. 
Typically, traffic sensors are deployed to automatically detect abnormal traffic conditions and CCTV 
videos are used to visually inspect and assess the incidents. Once incidents are confirmed, PCMS are 
used to warn and reroute travelers to mitigate potential safety issues and prevent severe backups. 

Incident management can be the primary goal of a smart work zone deployment, or it can be 
integrated into smart work zones with other primary goals such as in [2, 4]. A typical incident 
management is described as follows. 

Incident Management System, New Mexico, 2000 [31] 

¶ Objective: The primary goal of the system was to quickly identify incidents for an effective 
response to clear the roadway and enhance traveler safety. 

¶ System configuration: Eight CCTV were installed at key locations and the videos were 
inspected manually in real-time to detect incidents. Eight DMS, four HAR, and the project 
website were used to disseminate the incident and rerouting information to travelers. 

¶ Reported benefits: The response time to incidents reduced from 45 minutes to 25 minutes 
with the deployment of the incident management system. More than 60% of respondents in a 
survey reported the disseminated traffic information was accurate and timely [2]. 

2.1.5 Variable Speed Limit System  

The variable speed limit systems aim to increase the throughput and enhance safety by providing 
travelers a speed limit derived based on the current traffic conditions. The effectiveness of variable 
speed limit systems was evaluated in [32, 33, 34, 35], which report increased throughput, reduced 
travel time, and an increase in speed limit compliance. A typical variable speed limit system deployed 
in Utah [39] is summarized below, and more examples of variable speed limit systems can be found in 
[36, 37, 38]. 
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Variable Advisory Speed System, Utah, 2010 [39] 

¶ Objective: The goal of the system was to provide drivers with an advised traffic speed based 
on the measured traffic conditions in the work zone. 

¶ System configuration: Five RTMS were deployed to measure the traffic speed, volume, and 
occupancy at spacings ranging from 0.17 to 0.4 mile. Two variable message signs were used to 
display the advisory speed. 

¶ Reported benefits: Statistical analysis showed the system was in general effective at 
increasing mean speed and decreasing speed variance, thus providing smooth traffic flow 
when there was a slowdown during the weekend evening peak period. 

2.1.6 Automated Speed Enforcement System  

Automated speed enforcement systems are commonly used to improve the speed compliance of 
motorists. These systems can be deployed as a stand-alone device equipped with a speed sensor, a 
PCMS, and an optional camera. The effectiveness of the system varies based on the operational 
strategies used [40]. In general, the system is reported to decrease the average speed of traffic, 
resulting in fewer speed limit violations and improved safety. A typical stand-alone speed 
enforcement system is summarized below, while more deployments and evaluations of speed 
enforcement systems can be found in [41, 42, 43, 44]. 

Photo Radar Speed Enforcement System, Oregon, 2008ς2009 [45] 

¶ Objective: The system was deployed as a demonstration project to evaluate the effectiveness 
of the photo speed enforcement system. 

¶ System configuration: An RTMS was used to measure the traffic speed and volume. A camera 
was used to take photos of the license plates as the primary enforcement strategy. 

¶ Reported benefits: On average, the speed was reduced by 23.7% while the photo radar speed 
enforcement system was active. 

2.1.7 Performance Measurement System  

Performance measurement systems use traffic data to quantitatively measure the impact of the work 
zone project on safety and mobility, such as induced travel delay and the queue length [46, 47]. Such 
quantitative assessments can be used as incentives or disincentives for the work zone project 
contractors. 

A synthesis of work zone performance measures was reported in [48]. A performance measurement 
system using license plate recognition technology is summarized below. The operational impact of 
the I-35 reconstruction project in Texas in 2012 (ongoing) was quantified in the travel delay using 
Bluetooth sensors [26]. The experience of using probe vehicle data (e.g., vehicles equipped with GPS, 
Bluetooth, or Electronic Toll Collection devices) for evaluating work zone performance is described in 
[49, 50]. A more comprehensive review of mobility-based performance measures using seven 
different technologies can be found in [51]. 
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Work Zone Travel Time System, Arizona, 2002 [9] 

¶ Objective: The main goal of the system was to measure travel time through the work zone, 
which was used to provide incentives to the contractors if the traffic delay was less than a 
specified threshold. 

¶ System configuration: Two inductive loop detectors at both ends of the work zones were used 
to detect the presence of vehicles, which triggered digital cameras to take photos of the 
license plates. A license plate recognition algorithm was used to identify vehicles for 
measuring the travel time. 

¶ Reported benefits: The system was able to read 60% of the license plates and match 
approximately 11% of the license plates. The travel time measure helped the contractor adjust 
work operations to reduce congestion. 

2.2 ASSESSMENTS AND GUIDELINES OF SMART WORK ZONES  

This section reviews the existing works summarizing the collective experiences from work zone case 
studies, including evaluations of smart work zone systems, assessments of the benefits of smart work 
zone deployments, and guidelines for implementing smart work zone technologies. 

A continuing effort has been devoted to the development of a knowledge database 
(http://www.itskr.its.dot.gov) for documenting the ITS benefits, costs, and lessons learned [11, 52, 
53]. More than 1,600 summaries of ITS deployments across 16 taxonomy areas have been archived 
through 2014, including more than 130 summaries for ITS deployments in work zones. Twenty fact 
sheets were developed to summarize the benefits, costs, and lessons learned in ITS deployments, 
including one fact sheet focusing specifically on smart work zones. The primary lessons learned across 
smart work zone deployments were generally operations oriented (e.g., planning for sufficient testing 
time during the deployment of the smart work zone), allowing an adjustment period for travelers for 
higher effectiveness of the smart work zone. 

A detailed literature review [5] of 94 smart work zone deployments including queue warning systems, 
dynamic merge systems, alternate routes, and variable speed limits was conducted to summarize the 
benefits and typical uses of smart work zone technologies. It concludes that when more sensors are 
deployed, the systems provide faster notification of changes of the traffic conditions and increase the 
estimation accuracy of the traffic conditions. 

A cross-cutting study report [2] summarizes lessons learned from four smart work zone deployments 
and identifies key lessons learned for the success of a smart work zone system. For example, it is 
concluded that is vital to deliver accurate information to the public. However, no analysis of the 
detailed design of sensor networks of smart work zones is included. 

The best practices and lessons learned for the ITS strategic planning are documented in [16]. The 
emphasis is placed on the decision-making processes, including agency interactions, processes and 
procedures, organizational structures, and institutional involvement. 

The current practices for queue warning used by international agencies and state DOTs are identified 
in [54] based on a literature review of more than 40 practices and techniques. One of the reported 

http://www.itskr.its.dot.gov/
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difficulties of queue warning systems is the selection of locations for deployment of sensors, which 
may rely on ǘƘŜ ŦƛŜƭŘ ŜƴƎƛƴŜŜǊǎΩ expertise and knowledge to estimate where the end of the queue is 
likely to be located. 

A quantitative assessment of the mobility and safety benefits of smart work zones is conducted using 
ŀ άōŜŦƻǊŜέ ŀƴŘ άŀŦǘŜǊέ ŀƴŀƭȅǎƛǎ ƛƴ ώ17ϐΦ ¢ƘŜ ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ ǘƘŜ άōŜŦƻǊŜέ ŀƴŘ άŀŦǘŜǊέ ǇŜǊŦƻǊƳŀƴŎŜ 
data constrained the scope of the study to consider only five work zone deployments. 

In addition to summaries of smart work zone deployments, assessments of commercial smart work 
zone systems for specific applications have been conducted. Four different smart work zone 
configurations were evaluated for the accuracy of queue detection [25]. The LER solution iCone®, 
designed for work zones, was evaluated in [55]. A comprehensive study [22] compared 16 different 
commercially available advanced traveler information systems (ATIS) in 27 separate deployments 
throughout the United States. An 11-step procedure was developed to assist DOTs in choosing the 
most appropriate ATIS configuration for any given work zone. However, more emphasis was placed 
on the selection of generic systems, and little information was provided on the detailed design of the 
system (e.g., the number and type of sensors). Overall, it was concluded that more-advanced real-
time systems (consisting of multiple detectors and PCMS) have the greatest potential benefits in 
general, but they offered few advantages over stand-alone systems (consisting of one detector and 
one PCMS) when traffic is light and free flowing. 

Because of the distinct specifications and goals in each work zone, existing studies commonly 
summarize the collective experiences of smart work zone deployments into guidelines for future 
implementation via a systems engineering approach. Two representative implementation guidelines 
are summarized next.  

An intelligent work zone toolbox [56] was developed by Minnesota DOT, which contains guidelines 
for selecting an appropriate smart work zone system for different applications. The toolbox was 
intended as άbrainstorming materialέ and therefore did not include detailed designs of the smart 
work zone systems. 

Recently, a smart work zone implementation guide [1] was developed by FHWA, which summarizes 
key steps for successfully implementing smart work zones via a systems engineering process. The 
guidelines report that trade-offs typically exist between the desired system features and 
components, which, however, lacks quantitative assessment to understand the implications of 
different designs and work zone sensor configurations. 

2.3 SUMMARY OF LITERATURE REVIEW  

In general, the benefits of smart work zones have been widely reported. However, to quantify the 
effectiveness of smart work zones, measurement data before and after the deployment of the system 
is required, which is often unavailable in most case studies. In addition, based on the review of 
reports, the data collection process for quantifying the impact of smart work zones on mobility and 
safety was confirmed to be time consuming and often impractical. 
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Based on the large number of smart work zone deployments, efforts have been devoted to 
summarize the collective experiences from a variety of perspectives, ranging from the evaluation of 
off-the-shelf commercial systems for a specific application and assessment of operational strategies, 
to the development of a generic implementation guidelines via systems engineering approaches. 
However, very limited attention is given to subsystem-level analysis on the configuration of traffic 
monitoring component of smart work zones (e.g., the number and type of sensors used). The primary 
reason is that traffic monitoring system configurations vary significantly across smart work zone 
deployments and are typically developed for each specific deployment in collaboration with 
professional vendors. Moreover, collection of true traffic conditions (informally referred to as ground 
truth) is extremely difficult in the field. The deployment expense of the systems makes comparisons 
of various system configurations costly.  

The goal of this study is to fill a knowledge gap in the configuration of work zone systems via the 
evaluation of a large number of traffic monitoring configurations, which vary in the number and 
spacing of sensors, the type of sensors, the accuracy of individual sensors, and traffic estimation 
algorithms. For a quantitative comparison, the accuracy of the estimate of the traffic condition is 
used as the performance measure because of its importance in effectively enabling a variety of smart 
work zone systems such as back-of-queue warning, travel time estimation, and traffic advisory 
information. 
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CHAPTER 3: CONSTRUCTION OF A VIRTUAL TESTBED IN 
MICROSIMULATION  

This study proposes to use a microsimulation environment to assess a variety of smart work zone 
configurations and traffic estimation algorithms. This chapter describes the development of the 
microsimulation environment, including modeling and calibration of two work zones selected in 
Illinois, the quality analysis of field data, and the development of sensor error models. 

This chapter is organized as follows. Section 3.1 describes the selection of two work zones in Illinois 
for modeling in the microsimulation environment. Section 3.2 evaluates the field sensor data 
available for selecting the simulation period and the work zone model calibration. Section 3.3 
introduces a microsimulation software (AIMSUN) and the modeling procedure of the selected work 
zones. Section 3.4 documents the calibration procedure performed for the modeled work zones and 
the calibration results. Finally, the development of dedicated sensor models is presented in Section 
3.5, which completes the setup of the microsimulation environment. 

3.1 SELECTION OF WORK ZONE SITES  

A microsimulation environment can simulate traffic flows at the microscopic level. To enhance the 
validity of the findings in this study, a microsimulation that resembles realistic traffic conditions is 
highly desirable. Specifically, the traffic in the microsimulation should replicate traffic conditions in 
the selected work zones. Two work zones were selected in collaboration with IDOT: one with 
moderate average daily traffic (ADT) and one with high ADT. 

The selection criteria are summarized in Table 3.1. For modeling a work zone in the microsimulation 
software AIMSUN, detailed work zone geometry from the construction plan is required. Meanwhile, 
field sensor data is required for calibration of microsimulation models. In consultation with IDOT, 
several candidate work zones were reviewed, and the following two work zones with existing field 
deployed smart work zone systems were selected: 

¶ I-80 bridge repair project (IDOT Contract No. 60Y64) over the Des Plaines River in Will County, 
Illinois, with an ADT of 82,000 with 27% trucks. This project started in January 2015 and was 
ongoing at the time of the analysis. A smart work zone system was deployed, consisting of 18 
radar sensors and 12 RTMS. For the purpose of this research, Stage I of the work zone was 
modeled, shown in Figure 3.1. In the remainder of this report, this work zone is referred to as 
the I-80 work zone. 

¶ I-57/ I-64 freeway interchange pavement resurfacing project (IDOT Contract No. 78276) near 
Mt. Vernon in Jefferson County, Illinois, with an ADT of 33,620 with 32% trucks (2014). This 
project started in April 2014 and is ongoing at the time of this report. A smart work zone 
system was deployed, consisting of 22 radar sensors and three RTMS. For the purpose of this 
research, Stage IV of the work zone was modeled, shown in Figure 3.2. In the remainder of 
this report, this work zone is referred to as the I-57 work zone. 
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Table 3.1: Criteria Used for Selection of Work Zones to Be Modeled in Microsimulation Software 

 Purpose  Doc/Data  Comments 

Modeling 

Required 

Basic geometry 

¶ Length of the closed lane (taper, transition area, buffer space, 
construction zone). 

¶ Width of lanes. 

¶ Number of lanes. 

Typical daily 
construction activity 

Construction hours on weekdays and weekends. Lane closure 
information if not closed all day. 

Speed limit 
Changes of speed limits throughout the work zone and the location of 
the speed limit signs. 

Typical hourly traffic 
volume 

The traffic volume in the work zone with a granularity of 1 hour or 
higher. 

Percentage of trucks A rough estimation of the percentage of trucks. 

Desired 
Curvature, grade, 
geometry of 
merges/diverges 

The curvature and grade may help improve the soundness of the 
model; the geometry of the merge and diverge points may not be 
modeled depending on its complexity. 

Calibration 

Required 
Entering/exiting 
traffic volume data 

¶ On a typical construction day. 

¶ With a granularity of 1 hour or higher. 

Desired 

Traffic speed data 
¶ On a typical construction day. 

¶ With a granularity of 1 hour or higher. 

Travel time data 
¶ On a typical construction day. 

¶ With a granularity of 1 hour or higher. 

Queue length data 
On a typical construction day (see Chapter 4 for more discussion on 
how queue length is quantified). 

Sign placements 
The location and types of traffic signs placed before and through the 
work zone, including speed limit signs, work zone warning signs, and 
lane merging signs. 
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Figure 3.1: Stage I of the I-80 work zone. 

 

Figure 3.2: Stage IV of the I-57 work zone. 
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3.2 ANALYSIS OF FIELD DATA  

The most safety-critical period in work zones is when severe congestion occurs. In addition, the 
period of severe traffic congestion provides varying traffic conditions, such as queue formation and 
dissipation, and is suitable for testing the performance of various sensor network configurations and 
traffic estimation algorithms. This study proposes to reproduce the traffic conditions in severe 
congestion periods in each of the work zones. For this purpose, the field data was investigated to 
select the most congested period for modeling in each work zone. During the process of analyzing the 
field data, degradation of the data quality was observed during congested periods. This subsection 
documents the main findings during the analysis of the field data and also incorporates additional 
information based on a discussion with the vendor of the smart work zone systems, Ver-Mac, held on 
June 8, 2016. The methodology adopted in the data quality analysis is described in Appendix B.1. The 
draft report submitted to IDOT on December 26, 2015, and forwarded to Ver-Mac is found in 
Appendix B.2. 

This section reports on two data quality measures: (1) missing data rates, and (2) sensor 
measurement inconsistencies. The dataset used in this section was obtained through the software 
JamLogic, provided by Ver-Mac. The dataset includes the velocity and count data aggregated in user-
defined intervals. In this project, 5 minute intervals were considered to provide a good balance 
between data granularity and quantization error. 

This section is organized as follows. Section 3.2.1 describes the scope of the field data analyzed in this 
study. The main findings are summarized in Section 3.2.2. Finally, Section 3.2.3 remarks on the 
limitation of the data quality analysis and selects the congested periods to be modeled based on the 
data analysis findings. 

3.2.1 Data Description 

The data quality analysis was limited to the time and sensors that were considered for simulation. 
Specifically, the analysis was limited to the following periods and sensors: 

¶ Eastbound direction of the I-80 work zone between May 1, 2015, and May 31, 2015. This 
month was selected because the project started in April, 2015 and the modeling of this work 
zone in the microsimulation environment was conducted in June, 2015. The missing data 
percentage and the sensor measurement inconsistencies were computed under different 
scenarios to better understand the potential issues: 

o The entire month of May 2015. 

o An estimated peak hour between 1630 and 1730 hours for the entire month in May 2015, 
based on visual inspection of the speed data patterns. 

o Three time intervals with apparent congestion (May 1 from 1530 to 1800 hours, May 3 
from 1100 to 1630 hours, and May 7 from 0700 to 1630 hours), based on visual inspection 
of the speed data patterns. 

o A typical free-flow time interval (May 1, 2015, from 1300 to 1530 hours). 
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¶ Southbound direction of the I-57 work zone between November 1, 2014, and November 30, 
2014. This dataset was of interest for modeling because of the occurrence of severe 
congestion. For the data quality assessment, the missing data percentage and the sensor 
measurement inconsistencies were computed in the following scenarios: 

o The entire month of November 2014. 

o An estimated peak hour between 1630 and 1730 hours for the entire month of November 
2014, based on visual inspection of the speed data patterns from the RTMS. 

o Three time intervals with apparent congestion (i.e., November 26 from 1600 to 1800 
hours, November 26 from 2100 to 2300 hours, and November 16 from 1700 to 1830 
hours), based on visual inspection of the speed data patterns. 

o A typical free-flow time interval (November 18, 2014, from 0600 to 1100 hours). 

3.2.2 Data Analysis Findings  

This section presents the numerical results of the data quality assessment performed on the datasets 
in each of the work zones. 

I-80 Work Zone Data Analysis 

The missing data rates for the I-80 data during the analyzed periods for sensors installed in the 
eastbound direction are summarized in Table 3.2. 

The following observations can be made: 

¶ EB9* had a large number of missing speed records and count records, and was identified as 
problematic.  

¶ EB11 also had a large number of missing speed records and no count records. Ver-Mac 
clarified that EB11 was a standard radar unit installed on a distinct hardware platform (a 
portable changeable message sign) that was not designed to capture count data. Other radar 
units were installed on the stand-alone JamLogic platform and consequently recorded speed 
and count data. 

¶ During the congested intervals, EB10, EB14, EB15, and EB16 each had missing data rates 
above 10%, but they had lower missing data rates averaged over the month. 

¶ The RTMS EB12* had a higher missing data rate over the entire month compared to other 
intervals considered. Ver-Mac provided additional analysis that indicated the causes of the 
missing data included a sensor malfunction from May 5 0400 to May 6 1322. The additional 
analysis also identified that from 0550 to 0725 on May 28, the sensor did not report any data, 
and an adjacent sensor also did not report data during the interval. This localized failure is 
consistent with a problem occurring at the nearest cellular tower (e.g., tower maintenance).   

¶ Sensors EB16 through EB8 experienced significant issues during the congestion intervals. 
Sensors EB7 through EB3 had less significant missing data issues, presumably because the 
queue did not extend to their location. 
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¶ Overall, the missing data rate in the entire period was 3% over all sensors deployed, and less 
than 1% when excluding EB9* and EB11. The missing data rate in congested intervals was 
several times higher, especially for radar sensors. Ver-Mac provided additional analysis that 
indicated the missing data is more prominent between 0500 to 0700 and 1200 to 1500. Ver-
Mac indicated one cause could be due to prioritization of voice communications over data 
communications by the cellular provider during high communication traffic on the cellular 
network.  In heavily congested road traffic conditions, the missing data rate is also influenced 
by the fact that the radar units have reduced performance at speeds less than 20 mph, and do 
not record data at speeds less than 10 mph. When the communication network and the road 
network are both congested, both may influence the missing data rate. 

¶ The quantitative data inconsistency results between sample pairs of sensors on I-80 for all of 
May 2015 and a typical free-flow interval are shown in Table 3.3 and Table 3.4, respectively. 
The notation Ὥ O  Ὥ  ρ refers to the data percent change from sensor Ὥ to Ὥ  ρ. 

The following findings were obtained based on the statistical analysis: 

¶ As seen in Table 3.3 and Table 3.4, the RTMS provided higher values for speed and count 
measurements than the radar sensors. 

¶ The measurement inconsistencies occurred across two types of sensors, as well as among 
radar sensors. The largest inconsistency for speed (10% to 17%) and counts (73% to 93%) was 
observed between RTMS and radar sensors. 

Table 3.2: May 2015 I-80 Eastbound Percent Missing Data Rate 

 Entire Period  Peak Hours  Congested Intervals  Free-Flow Interval 

Sensor Speed Count  Speed Count  Speed Count  Speed Count 

EB3 0.41% 0.41%  0.00% 0.00%  1.99% 1.99%  0.00% 0.00% 

EB4 0.44% 0.44%  0.00% 0.00%  3.28% 3.28%  0.00% 0.00% 

EB5* 0.27% 0.27%  0.00% 0.00%  2.99% 2.99%  0.00% 0.00% 

EB6 0.53% 0.53%  0.00% 0.00%  2.99% 2.99%  0.00% 0.00% 

EB7* 0.24% 0.24%  0.00% 0.00%  2.99% 2.99%  0.00% 0.00% 

EB8 0.46% 0.46%  0.00% 0.00%  6.47% 6.47%  0.00% 0.00% 

EB9* 27.40% 27.40%  25.81% 25.81%  34.83% 34.83%  0.00% 0.00% 

EB10 0.52% 0.52%  0.00% 0.00%  10.45% 10.45%  0.00% 0.00% 

EB11 0.84% N/A  0.00% N/A  0.00% N/A  0.00% N/A 

EB12* 4.84% 4.84%  3.23% 3.23%  2.99% 2.99%  0.00% 0.00% 

EB14 0.85% 0.85%  0.00% 0.00%  15.92% 15.92%  0.00% 0.00% 

EB15 0.74% 0.74%  0.00% 0.00%  16.92% 16.92%  0.00% 0.00% 

EB16 0.75% 0.75%  0.00% 0.00%  19.90% 19.90%  0.00% 0.00% 

Average 2.95% 3.12%  2.23% 2.42%  9.36% 10.14%  0.00% 0.00% 

Average excluding EB9*, EB11 0.91% 0.91%  0.29% 0.29%  7.90% 7.90%  0.00% 0.00% 

Note: the symbol * denotes an RTMS.  
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Table 3.3: May 2015  
Data Percent Change on I-80  

Table 3.4: May 1, 2015  
(1300ς1530 hours) 

Data Percent Change on I-80 

Sensor Pair 

Percent Change  

Sensor Pair 

Percent Change 

Speed Count  Speed Count 

EB4O EB5* 17.08% 73.79%  EB4O EB5* 16.31% 79.85% 
EB4O EB6 3.12% 22.58%  EB4O EB6 1.73% 10.35% 
EB8O EB9* 14.23% 84.49%  EB8O EB9* 10.81% 93.73% 
EB8O EB10 8.29% 26.35%  EB8O EB10 6.93% 13.68% 

 Note: The symbol * denotes an RTMS. 

I-57 Work Zone Data Analysis 

The missing data rates for sensors installed in the I-57 southbound lane during November 2014 are 
presented in Table 3.5. 

The following observations were made: 

¶ The dataset was largely complete when the traffic was in free flow. 

¶ The radar sensors had around a tenfold increase in the missing speed data rate during congested 
periods compared with the monthly average. One primary cause was the slow traffic speed where 
radar sensors failed to detect the traffic. An illustrative figure plotting the missing data from radar 
sensors in severe congestion can be found in Appendix B.2 Figure 1. 

¶ The rate of missing data during congestion was significantly higher than the rate of missing count 
data during the same time interval. This may be explained by the operational principle of sensors 
(i.e., if no speed data is recorded, the vehicle counts are set to zero).  

¶ The RTMS did not have any missing speed or count records during the congested intervals, but 
it had higher than average missing data rates over the entire month compared with the radar 
sensors. As reported in JamLogic, SB7* had low battery and communication timeout issues 
between November 1 and November 4, which resulted in missing 34.98% of the speed data 
and 34.38% of the count data. 

Table 3.5: November 2014 I-57 Southbound Percent Missing Data 

 Entire Period  Peak Hours  Congested Intervals  Free-Flow Interval 

Sensor Speed Count  Speed Count  Speed Count  Speed Count 

SB1 1.33% 1.20%  1.54% 0.77%  10.67% 0.00%  1.64% 1.64% 

SB2 1.15% 0.75%  3.59% 0.26%  44.00% 0.00%  0.00% 0.00% 

SB3 0.83% 0.44%  3.59% 0.26%  33.00% 0.00%  0.00% 0.00% 

SB4 0.54% 0.38%  1.79% 0.26%  16.00% 0.00%  0.00% 0.00% 

SB5 7.14% 6.91%  10.51% 8.72%  21.33% 0.00%  0.00% 0.00% 

SB6 3.68% 3.02%  7.18% 3.85%  58.67% 0.00%  0.00% 0.00% 

SB7* 5.19% 5.00%  7.18% 7.18%  0.00% 0.00%  0.00% 0.00% 

SB8 1.52% 1.01%  4.36% 1.03%  49.33% 0.00%  0.00% 0.00% 

SB9 0.31% 0.08%  2.82% 0.00%  25.33% 0.00%  0.00% 0.00% 

Average 2.41% 2.09%  4.73% 2.48%  28.74% 0.00%  0.18% 0.18% 

Note: The symbol * denotes an RTMS. 
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The inconsistency assessment statistics between samples of neighboring sensors are presented in Table 
3.6 and Table 3.7. The following findings were summarized from Table 3.6 and Table 3.7: 

¶ The count inconsistencies between sensor pairs were large regardless of the sensor types. The 
inconsistency can be caused by measurement error from sensors, occlusion (i.e., the vehicle on 
the closer lane blocking the vehicle on the further lane from the view of the sensor) in heavy 
traffic, and the location of sensors (e.g., downstream sensors close to the work zone bottleneck 
may experience slower traffic with daily queues).  

¶ The inconsistency of speed readings between radar and RTMS pairs was relatively larger 
compared to that of radarςradar sensor pairs.  

Note: The symbol * denotes an RTMS. 

3.2.3 Summary of Data Analysis  

Based on the analysis of data in limited time periods and a subset of sensors in two work zones, the 
following findings were discovered: 

¶ The missing data and inconsistency issues are common in field data, especially if collected in 
noisy environments (i.e., characterized by large sensor measurement error) such as work 
zones. These issues were found in the data of both work zones. An additional analysis by Ver-
Mac shared with the research team showed that the average missing data rate on I-57 
decreased from 4% in 2014 to 1.3% in 2016.  

¶ The I-57 work zone had severe (28%) missing data issues for radar sensors during the 
congested intervals. The I-80 work zone had a lower missing data rate (< 8%) during 
congestion, except for specific sensors that malfunctioned (EB9*). 

¶ Both work zones presented data inconsistency issues. Inconsistencies were largest between 
RTMS and radar sensor pairs, where speed and count errors exceeded 10% and 70%, 
respectively, in the I-80 work zone.  

A preliminary data analysis report was submitted to IDOT and forwarded to the vendor, Ver-Mac. In a 
follow-up meeting that was held between the research team and Ver-Mac, Ver-Mac provided 
valuable information on practical deployment considerations and additional data analysis. This 

Table 3.6: November 2014  
Data Percent Change on I-57 

 

Table 3.7: November 18, 2014  
(0600ς1100 hours) 

 Data Percent Change on I-57 

Sensor Pair 

Percent Change  

Sensor Pair 

Percent Change 

Speed Count  Speed Count 

SB5O SB6 1.64% 23.49%  SB5O SB6 1.19% 28.39% 
SB6O SB7* 12.45% 39.64%  SB6O SB7* 10.38% 27.94% 
SB7*O SB8 10.06% 39.37%  SB7*O SB8 5.26% 24.24% 
SB8O SB9 6.06% 46.15%  SB8O SB9 6.93% 19.85% 
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helped the research team analyze the source of sensor measurement errors. For example, the RTMS 
are often calibrated using radar sensors and can have larger speed measurement errors than radar 
does if they are not properly calibrated. Owing to calibration difficulty, RTMS are typically placed in 
locations where they are not expected to move (and therefore require recalibration). These 
constraints are not considered in the present study; however, they are practical considerations when 
designing work zone systems.  

It is important to note that the missing data or inconsistent data causes challenges for the calibration 
of microsimulation models in this study, as summarized in Section 3.4. The influence of missing data 
and inconsistent data on the smart work zone application is algorithm and application dependent. For 
example, Ver-Mac system produced άǎƭƻǿ ǘǊŀŦŦƛŎέ ŀƴŘ άǇǊŜǇŀǊŜ ǘƻ ǎǘƻǇέ ƳŜǎǎŀƎŜǎ ƻƴ ǘƘŜ ǇƻǊǘŀble 
changeable message signs on November 26 during the period when congestion was confirmed to be 
present by field engineers. These messages occurred even in the presence of the high missing data 
rates. In addition, as demonstrated in the results of Section 4.3, low-quality count data provided by 
LER does not influence velocity estimates when simple algorithms are used. On the other hand, it can 
have a much larger influence on back-of-queue estimation when used with a more sophisticated 
estimation algorithm such as the nonlinear Kalman filter (see Section 4.3)  

It is also worth noting that the data analysis findings in this report were limited to one month of data 
collected by a subset of sensors. A comprehensive, long-term study is required for a more thorough 
understanding of the expected data quality in work zones across the state of Illinois. 

In summary, two occurrences of severe congestion in two work zones were identified from the data 
analysis and confirmed by field engineers: 

¶ I-80 eastbound direction between 1530 and 1800 hours on May 1, 2015. 

¶ I-57 southbound direction between 1530 and 1800 hours on November 26, 2014. 

3.3 MODELING OF WORK ZONES  

Two documents provided by IDOT primarily used for the work zone modeling: (1) construction plans, 
and (2) IDOT design standards. The construction plans were used to identify details of the existing 
road network such as road geometric design, topography, number of lanes, location of ramps, and 
speed limit. Further, the construction documents detail the work zone geometry based on the project 
stage, including location of tapers, closed lanes, and closed ramps. Additional details about work zone 
designs were found in the IDOT design standards, including taper lengths and work zone speed limits. 
In summary, the material rendered in both documents was studied to obtain the precise work zone 
geometry. 

The commercial simulation software selected for this project was AIMSUN, which uses a modified 
DƛǇǇǎΩ ŎŀǊ-following model [57]. AIMSUN is a traffic simulation software developed by the company 
Transport Simulation Systems (TSS). The work zones were modeled in AIMSUN in a two-step process. 

The first step was to model the existing road network. AIMSUN provides basic tools for manually 
modeling the road network. Alternatively, it also supports importing the online OpenStreet Map 
(OSM) file, which provides topological data, containing road network information of user-specified 
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areas. The models loaded from the OSM files need to be pre-processed because they may contain an 
inconsistent number of lanes, lane widths, intersection design, road types, and speed limits. 

The second step was to model the work zone based on the documentation provided by IDOT. This 
included activating traffic management strategies such as changes in speed limits and lane closures. 
The geographical coordinates and topographic features of the OSM models were used to estimate 
the location of the work zone design elements such as tapers, start of lane closures, and end of lane 
closures.  

One difficulty of this step was that AIMSUN did not formally support tapers such as those found in 
work zone environments. One solution was to drop a lane at the work zone location and connect it to 
the upstream road segment using a connecting node that narrowed smoothly, as shown in Figure 
3.3a. However, it was found that this approach produced unrealistic merging behavior because the 
narrowed node did not provide warning of the reduction of lanes to upstream vehicles. 
Consequently, all vehicles merged to the open lane right before the work zone. The approach 
adopted in this study was to model work zones as lane closures as shown in black in Figure 3.3b, 
where the sight-distance of lane closures was set to be the same as the taper length. 

                                                   

(a) Model the work zone by reduction of lanes.         (b) Model the work zone as a lane closure. 

Figure 3.3: Two approaches for modeling work zones in microsimulation. 

The modeled eastbound freeway road section near the I-80 work zone is shown in Figure 3.4. 
According to the design standards followed in the work zone project, the speed limits in work zones 
are 45 mph, which, however, is inconsistent with the speed data recorded by the deployed smart 
work zone system on I-80. This is likely due to drivers exceeding the posted speed limit and not 
because of measurement error. To capture this behavior in the work zone model, the speed limit in 
the simulation software was at 65 mph to reflect observations from the field data. 
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The modeled southbound freeway road section near the I-57 work zone is shown in Figure 3.5. No 
field speed data was available in the work zone, and consequently the speed limit in the I-57 work 
zone was set to the posted work zone speed limit value of 45 mph.  

 

Figure 3.4: Eastbound road network near the I-80 work zone.  
The deployed RTMS are labeled in light gray; radar sensors are in black. 

 

Figure 3.5: Southbound road network near the I-57 work zone.  
The deployed RTMS are labeled in light gray; radar sensors are in black. 
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3.4 CALIBRATION OF WORK ZONES  

The simulated microscopic traffic behavior is influenced by a large number of adjustable microscopic 
parameters. Calibration of a microsimulation model is the selection of a set of values for parameters 
such that the simulated microscopic traffic exhibits similar macroscopic traffic characteristics as 
observed in the field (e.g., similar queue propagation speed). 

The objective of this study is to reproduce severe traffic congestion in selected periods in two work 
zones. Therefore, a calibration step was conducted to properly select a set of microscopic 
parameters. 

This section summarizes the calibration process in this study. First, a literature review was conducted 
to identify the standard procedure and available tools for the calibration of a microsimulation model. 
Then an automated calibration framework was developed following the standard calibration 
procedure and using a nonlinear simulation-based optimization program. A sensitivity analysis for 
identifying the critical parameters to be calibrated and a validation of the developed automated 
calibration framework can be found in Appendix A. Finally, the calibration results are summarized for 
each work zone.  

3.4.1 Literature Review on Calibration of Microsimulation Models  

The standard procedure for the calibration of a microsimulation model can be found in [58]. In 
general, the calibration procedure consists of five steps, as illustrated in Figure 3.6: 

1. Identify a set of sensitive microscopic parameters to be calibrated. Though a large number of 
microscopic parameters are adjustable, only a subset of parameters is very sensitive in terms 
of influencing the traffic behavior in a specific simulation setup. In addition, calibrating all 
microscopic parameters is extremely time consuming and unrealistic in practice. Therefore, it 
is highly recommended to first identify a small set of sensitive parameters based on the 
literature review, prior knowledge, and sensitivity analysis techniques [59, 60]. 

2. Evaluate the default values for the parameters. The simulation outputs using the default 
values (e.g., velocity or flow measurements) are compared with the field data to compute a 
measure of goodness of fit. The default parameters can be used as the benchmark for 
assessing the effectiveness of the calibration. 

3. Adjust the values of the selected sensitive parameters. Depending on the initial evaluation 
result, a subset of the sensitive parameters is adjusted to achieve better goodness of fit. 
These values can be manually adjusted, which, however, relies strongly ƻƴ ǘƘŜ ŀƴŀƭȅǎǘΩǎ ǇǊƛƻǊ 
knowledge. Alternatively, an optimization program can be employed to automate the 
adjustment of the parameter values, which will be discussed shortly. 

4. Simulate the work zone traffic in the microsimulation using the new set of parameters. The 
microscopic simulation is a stochastic process, and consequently multiple runs (typically ten 
replications) are required to minimize the dependency of the simulated traffic on the random 
number generator used in the simulator. Commonly, the microsimulation is the most time-
consuming step. 
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5. Evaluate the simulated traffic using a selected metric that quantifies the goodness of fit to the 
field data. 

Calibration of a microsimulation model is generally a challenging problem owing to the large number 
of correlated microscopic parameters. The combination of the parameters can explode to millions, 
which makes an exhaustive search time consuming and impossible in practice. 

Earlier attempts are commonly based on trial-and-error manner to manually adjust the parameters 
that could reproduce the traffic condition as observed in the field. The effectiveness of the manual 
calibration relies strongly ƻƴ ǘƘŜ ŀƴŀƭȅǎǘΩǎ ƪƴƻǿƭŜŘƎŜ ŀƴŘ can be extremely time consuming, even for 
a small-scale network and a few parameters [61]. 

Alternatively, automated calibration has been explored in recent years. The calibration of a 
microsimulation model is essentially an optimization problem (i.e., maximizing the goodness of fit of 
the simulated traffic to the field observation data, by adjusting the microscopic parameters). 
Automatic calibration is a procedure that employs an optimization program in the step for searching 
potentially better values for the parameters. Compared with manual calibration, automatic 
calibration has been shown to be capable of significantly reducing the calibration time (from months 
to hours) while achieving similar calibration accuracy [62]. 

 
 

Figure 3.6: Procedure for calibrating a microsimulation model. 
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A variety of nonlinear optimization programs and commercial software have been previously 
proposed for the calibration of microsimulation models. Representative algorithms include Simplex 
[63], simultaneous perturbation stochastic approximation (SPSA) [64, 65], genetic algorithm [64], and 
OptQuest [66]. A comprehensive comparison of these nonlinear optimization programs on the 
effectiveness of calibrating microscopic model parameters was reported in the MULTITUDE project 
[66]. Recently, an advanced nonlinear optimization by mesh adaptive direct search (NOMAD) [67] 
software was also used for the calibration of microscopic traffic models [68]. Considering the 
software availability and the implementation effort, this study adopts NOMAD as the nonlinear 
optimization software in the calibration process. 

3.4.2 Automated Calibration Framework  

This study adopted the automated calibration approach following the standard procedure shown in 
Figure 3.6. The nonlinear optimization program NOMAD was integrated with AIMSUN for adjusting 
the microscopic parameters. 

Based on an extensive literature review [58, 60, 62, 63, 69, 70, 71, 72, 73], empirical knowledge, and 
a sensitivity analysis (which is described in Appendix A), eight parameters were identified as sensitive 
and associated with two types of vehicles: 

¶ Speed acceptance (speedAcceptance). This parameter multiplied by the speed limit on the 
road section determines the desired speed of vehicles. This parameter was found to be 
sensitive only for passenger cars. 

¶ Maximum acceleration (maxAccel). This parameter was found to be sensitive only for trucks in 
stop-and-go traffic. 

¶ Sensitivity factor (sensitivityFactor). This parameter represents the estimation of a vehicle on 
the deceleration rate of its leading vehicle. By setting this parameter below or above 1, the 
following vehicle underestimates or overestimates the deceleration rate of the leading 
vehicle, hence being more or less aggressive. This parameter was found to be sensitive for 
both car and truck types. 

¶ Reaction time (reactionTime). This parameter is the time for a driver to react to speed changes 
in the preceding vehicle. This parameter was found to be sensitive for both car and truck 
types. 

¶ Minimum headway (minHeadway). This parameter determines the minimum headway (i.e., 
the time difference of two consecutive vehicles passing the same location) of a vehicle to its 
preceding vehicle. This parameter was found to be sensitive for both car and truck types. 

The objective of the calibration in this study is to reproduce the severe traffic congestion in a specific 
period in the work zones, instead of developing a general microsimulation model. Therefore, 
considering the significant amount of time required in the simulation step, only one replication was 
simulated for each set of parameters. 
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The root-mean-square error (RMSE) was selected as the error metric considering its reliable 
performance for measuring the goodness of fit [66]. Because there was a lack of high-quality flow 
data from the deployed work zone sensors as reported in Section 3.2, only the velocity data was used 
in the error metric to calibrate the microsimulation. 

The inflow to the modeled freeway section was manually calibrated based on the flow measurement 
from the first sensor in each work zone. The truck ratio, the on-ramp and off-ramp flows were 
determined using the Illinois online database http://www.get tingaroundillinois.com/ 
gai.htm?mt=aadt, and http://idot.ms2soft.com/tcds/tsearch.asp?loc=Idot&mod=. 

The developed automated calibration framework was validated in a synthetic work zone described in 
Appendix A.2, where the true values of the calibrated parameters were known. The validation results 
showed the developed framework could effectively improve the goodness of fit of the simulated 
traffic to the field data. Meanwhile, the validation results confirmed the difficulty of the calibration of 
microsimulation models. Owing to the nonlinear correlation between parameters, different 
combinations of parameter values can achieve similar goodness of fit, which had been previously 
identified [66]. As a result, the combination of extreme values for two parameters may produce 
reasonable macroscopic traffic characteristics. However, such extreme values are less desirable, 
though the corresponding goodness of fit may be optimal. Therefore, after the automated 
calibration, a final selection step should be performed among the best auto-calibrated parameter 
values to select a set of plausible parameters based on empirical knowledge. 

3.4.3 Calibration Results of Two Work Zones  

The calibrated values for the parameters in the I-80 work zone after approximately 1,000 iterations 
and the final selection are summarized in Table 3.8. The calibrated values achieved an approximately 
40% reduction in the speed RMSE compared with the default values. 

Table 3.8: Calibrated Values for the I-80 Work Zone 

Parameter Default Value Calibrated Value 

car speedAcceptance 1 1.09 
truck maxAccel (m/s2) 1 0.82 
car sensitivityFactor 1 0.5 
truck sensitivityFactor 1 1.02 
car reactionTime (s) 0.8 0.6 
truck reactionTime (s) 0.8 0.8 
car minHeadway (s) 0 1.5 
truck minHeadway (s) 0 2.5 

speed RMSE 283.2 168.3 
              m: meter;  s: second 

 

http://www.gettingaroundillinois.com/%20gai.htm?mt=aadt
http://www.gettingaroundillinois.com/%20gai.htm?mt=aadt
http://idot.ms2soft.com/tcds/tsearch.asp?loc=Idot&mod=
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The calibrated values for the parameters on I-57 after approximately 800 iterations and the final 
selection are summarized in Table 3.9. The speed RMSE for the calibrated value decreased by only 8% 
compared with the default value. The main reason for the insignificant reduction of the RMSE was 
the high percentage of missing data during the congested period as identified in Section 3.2. 

Table 3.9: Calibrated Values for the I-57 Work Zone 

Parameter Default Value Calibrated Value 

car speedAcceptance 1 1.1 
truck maxAccel (m/s2) 1 0.9 
car sensitivityFactor 1 1.0 
truck sensitivityFactor 1 1.0 
car reactionTime (s) 0.8 0.6 
truck reactionTime (s) 0.8 0.8 
car minHeadway (s) 0 2.0 
truck minHeadway (s) 0 2.0 

speed RMSE 337.8 310.4 
               m: meter;  s: second 

3.5 SENSOR MODELS  

The microsimulation software AIMSUN allows error-free sensors to be placed in the simulation 
environment, but it lacks realistic traffic sensor error models representative of sensors deployed in 
work zone environments. Alternatively, AIMSUN can export the trajectory data at a fine granularity 
for each vehicle, which allows the development of customized sensors. This section presents how 
microsimulation trajectories are used to generate noisy traffic sensor data that reflects the true 
errors observed in the field. 

3.5.1 Overview of Sensor Types  

To better assess how different types of sensors featuring distinct measurement errors affect the 
traffic estimation accuracy, realistic sensor models were developed to degrade the simulated traffic 
measurements to be consistent with the data quality observed in practical field deployments. A large 
variety of sensor technologies have been applied to traffic monitoring. Interested readers are 
referred to the Traffic Detector Handbook [74, 75] for the comprehensive description and evaluation 
of traffic sensor technologies. In this study, three types of sensors commonly used in work zones 
were modeled: Doppler radar, LER units (e.g., iCone® sensor), and RTMS. 

Doppler radar (heretofore referred to as radar) is widely used in traffic sensing because the 
technology is mature and the cost is low. Doppler radar relies on the Doppler effect for measuring the 
velocity of vehicles, and it provides accurate velocity measurement for vehicles (less than 1 mph 
[76]), although performance degrades at lower velocities, where the Doppler shift is not as 
prominent. The traffic flow data is obtained by counting the number of velocity measurements 
recorded during each detection cycle. For best performance, Doppler radar units are commonly 
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mounted relatively low to the ground (a minimum 3 feet [76]). Consequently, the sensor is prone to 
occlusion issues (e.g., where one vehicle blocks another vehicle in an adjacent lane from being 
detected by the sensor), which may result in biased velocity and flow measurements when deployed 
on multi-lane freeways. 

LER units are deployed in traffic control drums for ease of deployment, but they have limited battery 
capacity available for detection. For long-term deployments, a basic operational mode of sensors 
consists of the sensor operating for only part of each detection cycle (typically 30 seconds of 
detection in a 60 second detection cycle, per a 2010 technical report [55]). Consequently, these 
sensors have measurement errors similar to those found with radar units for velocity and count data, 
as well as an additional sampling error related to the discontinuous operation. 

The RTMS measures the distance to objects in the path of its microwave beam; hence, it is able to 
detect moving and stationary vehicles in multiple detection zones (lanes). The RTMS is commonly 
mounted in an elevated position (at least 17 feet [77]), which reduces the occlusion potential and 
increases the counting accuracy compared with lower positioned sensors. With proper field 
calibration, the RTMS produces velocity measurements with 10% error, with larger velocity errors in 
heavy congestion [77]. 

3.5.2 Generation of Noisy Measurements  

A multistep process is used to convert the detailed trajectory data from AIMSUN into noisy sensor data to 
mimic the field data collected from the sensors described above. The first step is to determine which 
vehicles pass through the detection zone of a given sensor. The detection zones for each sensor are 
modeled based on the recommended installation guidelines [76] and the reported field of view. For 
example, the radar and LER sensors are aimed at oncoming traffic, resulting in a detection zone 
approximately 140 feet upstream of the sensor, as shown in Figure 3.7. The detection zone of the LER is 
assumed active for only the first half of the detection cycle, resulting in the detection of only a subset of 
vehicles. The RTMS detection zone is located at the installation point. For a given detection cycle, the 
vehicles that pass through the detection zone are potentially available to contribute to the average 
velocity or count measurements. 

 

Figure 3.7: Illustration of an occluded vehicle A  

caused by the presence of vehicle B in the detection zone. 
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The next step is to discard any vehicle that passes through the detection zone whose trajectory is 
occluded by another vehicle. As illustrated in Figure 3.7, two vehicles, labeled A and B, travel through 
the sensing area in the outside lane and inside lane, respectively. Vehicle A is considered occluded if 
more than po percent of the trajectory of vehicle A overlaps with the trajectory of B in the detection 
zone. The parameter ὴέ is selected as ὴέ = 30% which results in the occlusion of approximately 40% of 
vehicles in heavy congestion. Occluded vehicles are removed for radar and LER sensors, while RTMS 
are assumed to be mounted in a position to prevent occlusion, but the count is still perturbed by a 
counting error consistent with the reported accuracy [77]. 

After occluded vehicles are removed, any vehicle with a velocity outside the measurement range of 
the sensor is also discarded. The radar and LER sensors have a measurement range of 5~99 mph [76], 
while the RTMS has a range of 0~110 mph [77]. 

For vehicles that remain, the measured velocity is assumed to be a reading of the true vehicle velocity 
perturbed by measurement error. Measured velocities are constructed by adding a measurement 
error generated from ὔ πȟ„ to the true velocity, where „ takes two distinct values in free-flow and 
congested traffic. For the radar and LER sensors, „ is chosen such that the true vehicles are measured 
with an accuracy of 1 mph, while the RTMS velocities are measured to within 10%. At low vehicle 
velocities, the errors are increased to 2 mph for radar and LER, and 15% for the RTMS devices. Note 
that although the measurement error is assumed unbiased, the average velocities and counts are 
biased because of the sample set (i.e., removing occluded vehicles, which are predominantly from the 
faster lane of traffic). Finally, the harmonic mean of the noisy velocity measurements is taken as the 
average velocity reported by the sensor, and the number of measurements is the count. 

To model the realistic missing data rates that occur in field deployments, a subset of measurement 
detection cycles is also discarded, resulting in no data available for estimation during the cycle. Up to 
15% of the data from the radar and LER sensors and 3% of the data from RTMS are dropped in during 
congested conditions, based on the missing data rates observed from work zone field data in Illinois. 
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CHAPTER 4: TRAFFIC ESTIMATION ALGORITHMS  

This chapter is devoted to the description of the traffic estimation algorithms implemented for 
estimating the velocity, queue length, and travel time. Consider a segment of roadway of length ὒ 
containing a work zone, observed over a period of time Ὕ. The velocity along the roadway is denoted 
ὺ ὸȟὼ, where ὸɴ  πȟὝ and ὼ  ɴπȟὒ. If a queue develops on the segment because of a bottleneck 
created by the work zone, the length of the queue is denoted ὰὸ π. Finally, the travel time of a 
vehicle entering the roadway at time t traveling the length of the road segment ὒ is denoted † ὸ. In 
this study, the velocity along the roadway is directly estimated, which is then used to estimate the 
travel time and the length of the queue when it occurs. The evaluated traffic estimation algorithms 
are described next. More technical details can be found in Appendix C. 

4.1 SPATIAL INTERPOLATION 

A common class of algorithms infer the traffic conditions along the roadway by spatially interpolating 
the measurement data obtained from sensors. Such strategies include constant interpolation [78], 
min interpolation [79] adopted by the Texas DOT, averaging interpolation [80], the mid-point 
algorithm adopted by the Chicago DOT [81] and Wisconsin DOT [81], and the three-segment 
algorithm [82]. More sophisticated interpolation strategies, such as linear interpolation [83] and 
quadratic interpolation [84] have also been proposed. 

Considering the performance and ease of implementation, the linear spatial interpolation was 
selected as a representative interpolation algorithm for further evaluation. To estimate the velocity 
ὺὸȟὼ between a pair of sensors located at ὼρ and ὼς ὼρ  with corresponding measured velocities 
ὺ and ὺ, the estimated velocity ὺὼȟὸ for ὼɴ ὼρȟὼς is computed as follows: 

   (4.1) 

The same process is repeated for each pair of adjacent sensors to obtain the estimated velocity field 
throughout the spatial domain. 

4.2 SPATIO-TEMPORAL FILTERING 

One criticism of spatial interpolation algorithms is that they do not directly account for the spatio-
temporal dynamics of traffic. A number of research articles have developed algorithms that attempt 
to circumvent these limitations. 

A two-dimensional interpolation algorithm for speed-map reconstruction and travel time estimation 
was proposed in [85]. This algorithm produces speed estimates at any point ὸȟὼ as a weighted 
average of four neighboring sensor measurements in the time-space domain; that is, a point of 
estimation between two sensor deployments (in space) and two sensor reports (in time). The weight 
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of each measurement is a function of the distance to the point of estimation. This results in a smooth 
speed surface that is then used to reconstruct vehicle trajectories. 

A trajectory reconstructionςbased method was explored in [86]. That algorithm relies on first-order 
traffic flow theory to extrapolate traffic states at sensor locations to an extended segment of road. 
The general idea is to reconstruct vehicle trajectories using discrete speed observations of vehicles as 
they cross the sensor location. Each observation is assumed representative of the speed state in a 
subset of the time-space domain, with a width delimited by the headway between vehicles and 
projected in time and space (upstream or downstream of the sensor location) based on wave 
propagation speeds. Once a new observation arrives, the next subset of the time-space domain is 
determined and the speed state is updated. The vehicle trajectories are reconstructed by 
concatenating the projected traffic states. 

A kernel smoothing technique that incorporates traffic dynamics was developed in [87]. This type of 
algorithm was further adapted to the context of heterogeneous data sources [88, 89]. More 
importantly, it was improved in [81] to avoid structural bias in travel time estimation. 

The main idea of this family of spatio-temporal estimators is to estimate traffic speed (which is equal 
to the inverse of the traffic pace) using a weighted average of the available sensor measurements. 
The weight of each measurement is given by an exponential decay function that penalizes 
measurements that are distant to the point of estimation. This distance, however, is offset in the time 
dimension to account for the propagation of traffic waves. An underlying assumption is that the 
traffic wave propagation velocity is constant for a given traffic state. Because the traffic wave 
propagation velocities in congestion and free flow differ, two estimates are produced: one assuming 
free flow and one assuming congestion. The final estimate is obtained as a convex combination of the 
free-flowing and congested estimates. 

Considering the scalability, robustness and ease of online implementation required for this research, 
the filtered inverse speed-based estimation algorithm proposed by Van Lint [81] was selected as 
representative of the spatio-temporal estimation algorithms. 

The selected parameter values for the implemented spatio-temporal algorithm can be found in 
Appendix C.1. 

4.3 KALMAN FILTER 

The Kalman filter [92] is an algorithm used to estimate the state of a linear system by correcting a 
model-based prediction with measurement data. The Kalman filter and its nonlinear extensions 
necessary for traffic estimation can be understood by posing the model and sensor measurement 
processes in state space form as follows: 

     (4.2) 

The first line in Equation 4.2 is known as the evolution equation, where ὼὲ is the traffic state vector at 
time step ὲ to be estimated, ꞈ  denotes the traffic flow model used to predict the traffic state at time 
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ὲ given the traffic state at time ὲ  ρ, and –ὲ
 
Ḑ πȟ╠  is a white noise process with covariance ╠. 

The second line in Equation 4.7 is the observation equation that relates the vector of measurements 
ώὲ received at time ὲ with the traffic state variables ὼὲ through the measurement model ꞊. The 
random variable ‭

 
Ḑ πȟ╡  denotes the measurement error distribution and is modeled as white 

noise with covariance ╡. The Kalman filter and its nonlinear variants are sequential-state estimators 
that are optimal estimators (in the best linear unbiased sense) of the state ὼὲ given a sequence of 
measurements ώπȟỄȟώὲȢ 

Considering the nonlinearity of the traffic models, a number of variations of Kalman filter have been 
explored for estimation of the traffic conditions, including the extended Kalman filter (EKF) [19], the 
unscented Kalman filter (UKF) [93], the mixture Kalman filter (MKF) [94, 95], the particle filter (PF) 
[96, 97], and the ensemble Kalman filter (EnKF) [98]. 

EKF relies on the linear approximation of a nonlinear system, and it has been used to estimate the 
traffic density [19, 99]. The computation of the Jacobin matrix in the linearization step is in general 
computationally heavy; hence, a simultaneous perturbation technique was proposed [100] to 
improve the efficiency of the linearization step. 

In the traffic estimation, the nonlinearity of the traffic dynamics comes from the nonlinear 
relationship between the flow and density. The empirical nonlinear relationship, known as the 
fundamental diagram, can be approximated by a piecewise linear function. Physically, this indicates 
the nonlinear system (Equation 4.2) consists of several modes (i.e., free flow or congested) under 
which the system is linear. Based on this observation, the MKF was proposed [94, 95, 101] to model 
the traffic as a switched state system. 

The linear approximation of the EKF can give poor performance for a nonlinear system, and the 
piecewise linear assumption on the fundamental diagram. Therefore, UKF [102] has been developed 
based on a deterministic sampling technique to estimate the propagation of the error covariance 
matrix, which does not require the linear approximation or assumption. 

A more general approach is the Monte Carlo based PF [96, 97, 103], which can be applied to generic 
nonlinear systems with possibly non-Gaussian distributions. Compared with the UKF, PF gives higher 
estimation accuracy but at a cost of computationally expensive [104]. Assuming all probability 
distributions associated in the system are Gaussian, EnKF [98, 105] can achieve similar performance 
as PF and is more computationally efficient. 

In summary, the EKF, MKF, UKF, EnKF rely on linearization of the system for closure assumptions on 
the state error distributions, while the PF is a fully nonlinear Bayesian estimator that can be 
computationally expensive for large systems. Consequently, the EnKF is implemented as 
representative filtering algorithm for work zone traffic state estimation. More technical detail of the 
EnKF algorithm and its implementation can be found in Appendix C.2.  

4.4 BACK-OF-QUEUE AND TRAVEL TIME ESTIMATION 

In this study, given an estimate of the velocity ὺὸȟὼ in space and time, a standard approach across 
algorithms was used to estimate the length of the queue and the travel time. 
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Algorithms specifically for queue estimation have also been previously developed. A classic approach 
is to estimate the queue length based on the cumulative inflow and outflow [109, 110], which is, 
however, sensitive to the length of the road and the measurement error of sensors. Higher queue 
length estimation accuracy can be achieved with more-advanced techniques, such as incorporation of 
the queuing dynamics [111] and the Kalman filter [112]. 

For fair comparison of the implemented algorithms covering three levels of sophistication, the queue 
length is computed based on the estimated velocity field. Specifically, the estimated length of the of 

the queue ὰὸ is determined as the maximum length of any consecutive segment in the velocity field 
such that ὺὸȟὼ ‌, where ‌ is a threshold denoting congested traffic velocities. In this study, ‌ 
was selected as 40 mph. 

This study uses the speed-based travel time estimation method [113] considering its simplicity. The 
travel time is computed using an instantaneous [114] travel time estimate: 

     (4.3) 

The instantaneous travel time is valid under the assumption that the velocity field is constant over 
the time interval ὸȟὸ †ὸ , which may fail in scenarios with rapid queue growth or dissipation. The 
primary benefit of the instantaneous travel time is that it does not require the future traffic state to 
be predicted. Other statistical travel time estimation and prediction models using historical data are 
discussed in [115, 116]. 
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CHAPTER 5: COMPARATIVE ANALYSIS 

This chapter summarizes the key findings based on the quantitative comparison across various sensor 
network configurations and traffic estimation algorithms. A subset of the simulation results from the I-
80 work zone are visualized and discussed in this chapter to justify the findings. Similar findings were 
obtained from the I-57 work zone, and the complete simulation results are included in Appendix D. 

5.1 TRAFFIC ESTIMATION ERROR METRICS 

The error metrics used to assess the performance of the various estimators are briefly described. To 
calculate the errors, the true state to be estimated is first calculated from the AIMSUN trajectory 
data. The true velocity field (Figure 5.1a), true queue length (Figure 5.1b), and true travel time (Figure 
5.1c) are constructed on a finely discretized spatio-temporal grid with ά ɴ ρȟȢȢȢȟάάὥὼ space cells 
of length 50 meters and ὲ ɴ ρȟȢȢȢȟὲάὥὼ time steps with a duration 5 seconds. Within each grid the 
true velocity ὺὲȟά  ƛǎ ŎƻƳǇǳǘŜŘ ǳǎƛƴƎ 9ŘƛŜΩǎ ŘŜŦƛƴƛǘƛƻƴǎ ώ117]. The true travel time † ὲ is taken as 
the average travel time of all vehicles entering the roadway during the time step ὲ, and the true 
length of the queue ὰὲ is computed as the maximum length of a space segment with a velocity of 
less than 40 mph. 

The mean absolute error (MAE) is used as the error metric to quantify the estimation accuracy. Four 
types of MAE errors are computed, namely, (1) Ὡὺ , the MAE the estimated velocity over the entire 

spatio-temporal domain; (2) Ὡ
 
, the MAE of the estimated velocity in an area near the back of the 

queue (i.e., the error of the velocity in an area defined by ± 0.5 mile around the true location of the 
back of the queue); (3) Ὡὰ, the MAE of the estimated queue length; (4) Ὡ† , the MAE of the estimated 
travel time. 

Specifically, given the estimated velocity ὺὲȟά , the MAE of the velocity estimates over the entire 
time-space horizon is defined as follows: 

   (5.1) 

The metric Ὡὺ measures the average estimation accuracy of the velocity over the entire spatio-
temporal domain. However, the most safety-critical area is the area around the location of the end of 
the queue, where accurate velocity estimates are most desirable. Therefore, the MAE of velocity 

estimates around the queue Ὡ is introduced: 

       (5.2)  

where ά ὲȟά ὲ denotes the ± 0.5 mile location of the end of the queue at time step ὲ. The 
summation of the absolute error is averaged over the number of cells ὓ involved in the computation. 
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(a) True velocity field over 5 miles and 2.5 hours 

 

(b) True queue length over 2.5 hours. 

 

(c) True travel time over 2.5 hours. The true travel time was not  
obtained in the last period because vehicles that entered the road segment after  

approximately 2 hours did not exit before the simulation stopped. 

Figure 5.1: True state of the (a) velocity field, (b) queue length, and (c) travel time  
obtained in simulation for I-80 over 5 miles between 1530 and 1800 hours on May 1, 2015. 
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Similarly, the MAEs of the queue length Ὡὰ and the travel time Ὡ† are defined as follows: 

    (5.3) 

and 

    (5.4) 

5.2 ALGORITHMS AND SENSOR SPACINGS 

In the first set of experiments, the influence of the sensor spacing and traffic estimation algorithm on 
the travel time, queue length, and velocity estimation error are analyzed. For each algorithm, 11 
spacings ranging from 1/8 mile to 5 miles are considered for I-80. All sensors are assumed to be RTMS 
in these experiments. Similar findings are made for other types of sensors and on I-57, which are 
attached in Appendix D. 

For each experiment, the MAE on the velocity estimate is computed both as an average over the 
entire spatio-temporal domain, as well as in the area immediately around the true back of queue (± 
0.5 mile) as identified in AIMSUN. The resulting errors as a function of the algorithm type and sensor 
spacing are shown in Figures 5.2 and Figure 5.3. As expected, as the density of sensors increases; all 
algorithms result in lower velocity errors, with the best performance (about 5 mph error overall and 6 
mph around the queue) by the linear interpolation algorithm with sensors placed every 1/8 mile. Not 
surprisingly, all algorithms perform worse in the neighborhood of the queue compared with the MAE 
reported over all space and time, which is unfortunately where the errors may be most safety-critical. 
The spatio-temporal algorithm has the highest error around the queue, which results in higher total 
MAE compared with the spatial interpolation algorithm. Note that the algorithm was originally 
proposed as an offline algorithm [81], and the performance may change if additional measurement 
data is available for smoothing. At very dense sensor spacings, the EnKF performs worse than the 
interpolation and smoothing algorithms because the velocity is computed from the density estimate 
through (4.9) rather than being directly estimated, as in the better-performing algorithms. However, 
in the neighborhood of the queue, the EnKF localizes the queue more accurately, which generally 
results in higher-quality velocity estimates in the neighborhood of the queue. 

The general trend of the MAE for the queue length estimation (Figure 5.4) is similar to the velocity 
MAE. This is a direct result of the fact that the queue length is estimated from the velocity field, and 
consequently improvements on the velocity field result in better queue length estimates. The true 
maximum true queue length during the simulation is approximately 3 miles. Traffic in the queue is 
characterized by speeds less than a threshold speed, set as 40 mph in the present study. The EnKF 
uses a traffic model and uses the flow measurements from RTMS to consistently outperform the 
other estimators across a wide range of sensor spacings. 
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Figure 5.2: MAE of the velocity field over the entire spatio-temporal  
domain using RTMS across a range of spacings. 

 

Figure 5.3: MAE of the velocity field around ± 0.5 mile of the location  
of the end of the queue using RTMS across a range of spacings. 

Finally, the MAE of the travel time estimation over a 5-mile distance is shown in Figure 5.5. The travel 
time of the road section in free flow is around 5 minutes, and the longest travel time during 
congestion is 40 minutes. The EnKF is generally the best-performing travel time estimator, and it 
offers slightly improved performance over the spatio-temporal smoother. Recall that the spatio-
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temporal algorithm directly estimates the pace of traffic (i.e., the inverse of traffic velocity), which 
results in a better estimate of the travel time than the purely spatial interpolation algorithm. The 
MAE for travel time is relatively large for all algorithms independent of the spacing, and the largest 
source of error is due to the use of the instantaneous travel time calculation (Equation 4.21), not the 
underlying velocity estimate. In fact, the true instantaneous travel time has an MAE of more than 6 
minutes, which is comparable to the MAE observed in the travel time estimates of the best-
performing algorithms. In traffic conditions with slower dynamics (e.g., in free flow or in complete 
congestion), the use of the instantaneous travel time may result in lower errors. 

 

Figure 5.4: MAE of the queue length estimation using RTMS across a range of spacings. 

5.3 TYPE OF SENSORS 

In the next set of experiments, the influence of the sensor type (i.e., RTMS, radar, and LER) and the 
errors they introduce were compared across algorithms. Recall that the RTMS offers the lowest-
quality velocity measurement of individual vehicles but provides more reliable count data than the 
radar-based sensors. The MAE for the estimated traffic velocity, the queue length, and the travel time 
are shown in Figure 5.6a, Figure 5.6b, Figure 5.7a, Figure 5.7b, respectively, for sensors placed at a 
spacing of 1 mile. 

To understand the potential benefit of improved sensor technologies, traffic estimates using an ideal 
sensor are also generated. The ideal sensor is assumed to have zero error (i.e., it measures the 
velocity of every vehicle exactly and has no occlusion or dropped packets). It does have a 
quantization error because the count and velocity are computed within a single detection cycle. For 
example, if the aggregation interval is 30 seconds, the quantization error (e.g., including or excluding 
a single vehicle near the cycle boundary) introduces a change in the flow of 120 vehicles/hour/lane. 
Algorithms running with measurements from the ideal sensor have velocity, queue, and travel time 
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errors that are similar to those of the RTMS, which indicates that quantization error is the largest 
source of remaining error from the existing sensors. 

 

Figure 5.5: MAE of the travel time estimation using RTMS across a range of spacings. 

The analysis also indicates that the EnKF algorithm is the most sensitive algorithm to the sensor type, 
and it provides the poorest velocity estimates when combined with LER sensors. This is due to the 
reliance of the EnKF algorithm on accurate flow data, which is degraded in the LER devices because 
vehicles are recorded for only a portion of the detection cycle (resulting in increased quantization 
error), and the counts are prone to larger occlusion errors. Across all traffic quantities and all 
algorithms, the radar and RTMS offer at least as good or better accuracy performance than the LER 
devices. The use of LER devices may still be warranted if the cost of the LER allows more sensors to be 
deployed compared to RTMS or radar systems. 

5.4 ACCURACY OF SENSORS 

The third set of experiments was to compare the influence of the accuracy of individual sensors with 
the estimation accuracy. 

Synthetic sensors that may be available in the future were simulated for the RTMS, radar, and LER 
sensors. The synthetic sensors feature reduced the standard deviation of the measurement noise 
(more-accurate sensors) and the missing data rates (more reliable sensors). For example, a sensor 
RTMSx2 denotes a synthetic RTMS whose measurement noise and the percentage of missing data are 
reduced by a factor of 2 from the currently available RTMS in the market. In total, seven synthetic 
sensors were simulated: RTMSx2, RTMSx4, RTMSx8, RADARx2, RADARx4, RADARx8, and LERx2. In 
addition, an ideal type of sensor without measurement error was simulated to assess the maximum 










































