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EXECUTIVE SUMMARY

Federal regulations (23 CFR 630 Subpart J, 23 CFR 630 Subpart K) place emphasis on smart work zone
technologies within and around work zones to improve safety and mobility. Given the increasing

number of smart work zondeployments, crosstudies have been performed to summarize the lessons
learned, and work zone implementation guidelingere recently published by the Fedendighway
Administration(FHWA}o assist departments of transportatiqidOTs)n determiningthe feasibility and

design of smart work zones for a given application.

Two critical components for the success of a smart work zone deployment are the quality of the traffic
data collected by sensor networks and the algorithms used for data processing, wh&mcombined
provide realtime traffic information in the work zone. Accurate and reliable traffic estimation is the
basis for many smart work zone systems regardless of the specific application. For example, the
effectiveness of a portable changealnlessage sign (PCMS) is reduced if the message does not
accurately correspond to current traffic conditions. Therefore, the accuracy of the traffic estimation can
be regarded as a critical metric for the potential effectiveness of smart work zones.

Using he estimation accuracy as a metric of the potential effectiveness of work zones, this study
focuses on quantitatively evaluating a large variety of sensor network configurations and traffic
estimation algorithms imicrosimulationto obtain insights on begractices for designing smart work
zone systems. Two work zonlesated on 480 in Will County and 57 in JeffersorCounty were
modeled and calibrated with field data in tlmeicrosimulationenvironment. Dedicated sensor error
models were developed to gerate realistic measurements correspondingtoppler radar sensors
(radar), remote traffic microwave senso(®TMS), antbw-energy radafLER).

To assess the importance of algorithms for the estimation accuracy of the velocity, queue length, and
travel time, three algorithms with different levels of sophistication were implement&dspatial
interpolation used in practicg?) spatiotemporal fitering, which integrated a smoothing component in
the temporal horizon(3) anda traffic flow modetbased nonlinear Kalman filtefo identify the critical
factors on the sensor network design in a smart work z@d@different configurations of sensor
networks were guantitatively assessesghach with three algorithmthat varied in the number and

spacing of sensors, the type of sensors, and the accuracy of individual sensors.

In summary, this study assesksé26 combinations of sensor network configurati® and traffic
estimation algorithmsThe main findings aras follows

1 The spacing of sensors is an important factor for improving the accuracy of traffic estimation,
especially atlargesensor spacin¢e.g., 1 mile)When the sensor spacing is smatlean 0.5
mile, the benefit of additional sensors or the choice of algorithm is marginal (i.e., les§%han
improvement per sensor).

1 The nonlinear Kalman filter generally provides significantly rame@urate estimation of the
velocity, the queue length, and the travel time compaweith other algorithms wherhe
spacing of sensors exceeds 1 mile. It has the potential to reduce the cost of the eséstiuys
by approximately 50% while achieving trearse level of traffic estimation accuracy. However,




the performance of the nonlinear Kalman filter relies on the appropriate selection of algorithmic
parameters, which requires field data collection and expettisapplythe technique.

1 The RTMS provides meaccurate flow measuremeathanradarand LERecause ofts less
prominent occlusion issue. The accurate flow measurement can significantly improve the
estimation accuracy of the nonlinear Kalman filtering algorithm. The spatial interpolation and
the gatio-temporal filtering algorithms useelocitymeasurement®nly; hence theyhave less
accuracy variatiomcross three types of sensors. In the casturacy analysis, thedarsensos
arethe most cost effectivdéor estimating the velocity and queuergth. At the same system
cost, the additional number of radar sensoaddwer unit priceallowsmore to be installeyl
provides higher improvement of the estimation accur#tgn using moreaccurate butewer
RTMSIt should be notedhat the costaccurag anaysis was conducted based bmited cost
data. It is recommendedhat the cost accuracpe re-assessedyiven the updated cost data for
each specific deployment.

1 Existing sensor technologies are sufficient for good performance across all algorithms
considered and little additional benefit can be expected from improvements of the quality of
individual sensorbecausaneasurement error is dominated by the quantization error and
errorsrelated toocclusion (foradarand LER). This findirgbased orthe assumption thaall
sensors are properly calibrated to achieve #reor magnitudes as specified by the sensor
manufacturerspecification and operate reliabliylore benefit can be achieved lopprovingthe
reliability of sensors instead of increasingividual sensor accuracyhisconclusions made
based orthe rate ofsignificant missing data during congestiorthe fielddatasetin a work
zonewhere notraffic estimation algorithm can produ@curate traffic estimates.

1 All classes of implementeaaigorithms perfornrelativelypoorly on travel time estimatioowing
to the use of the instantaneous travel time estimation scheme. The use of Bluetooth senkor
not improve travel time estimation accuraahen the travel times are quickly changinislis
because the sensors only record the travel time of the vehicle that just completed the trip,
which may no longer be a good estimate of the travel time of the vehicle just entering the
stretch of roadwayAnalyticswith the capability of tavel timepredictionfor smart work zone
monitoring systems are recommended to obtain a bettaveltime estimation.

The findings in this study are intended to

1 HelpDOTsn their decisiormaking processegardingthe acquisition ofsmat work zone
systems.

1 Assistvendorsworking withstate DOT#&n thedevelopment of improvedystemdor smart
work zones.

All source code developed in this study can be foaticktps://github.com/LabWork/ IDOF
SmartWorkzone
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CHAPTER 1: INTRODWIN

1.10BJECTIVE OF THELSMTU

Smart work zoneaim to improve work zone safety and mobility through the integration of traffic
sensors, estimation algorithms, and traffic management strategies. As illustrated in Eigjuae

smart work zoneJ] normally consists dfl) a sensor network to measure current traffic conditions in
and around the work zon€2) a data processing algorithm to process the raw data and estimate
work zone quantities of interest (e.ghe back of the queue, the avagavelocityin the work zone);

(3) output deviceghat disseminate traffic information to the appropriate consumer (e.g., drivers or
departments of transportation) depending on the application; #ida communication networthat
connects the individualamponents.

__________________________________ —_
:_ Smart Work Zone Architecture |
| Traffic Sensors: in;t:;;n;z?;f;n Output Device: 1 TAPP!'“t"mS: :
|| Quantities: |:> 1. Radars :> 2. Velocit ::> 1. PCMS |:> . n;aﬁf: ~
|| 2 Flow 2. ccrv b ’t’ 2. Radio , Q""’ “;fg , |
. stimation . Queue Warning
2. Velocit .
| elocity 3. Bluetooth 3. Delay Estimation 3. Web 3. Travel Delay :
e o o —_ *________J ______ T ______ }_____
S S —— e ,—,—— F———————— -
| , — |
Sensor Evaluation: || Network Configuration: Algorithm Assessment: Mess'agng ectiveness: R hI
| 1A 1T 1. Measurement-based 1. Design of messages esearc |
I : cclura'c-y . Types of sensors 2. Filtering-based 2. Selection of messages Topics
2. Reliability 2. Numbers of sensors . . |
I| 3. catibration 3. Accuracy of sensors 3. Macroscopic model- 3. Position of output
| ) ' 4 based devices |
|

Figure 1.1Architecture of smart work zones. This study focuses
on the assessment of network configurations and data processing
algorithms for estimating velocity, queue length, and travel time.

Snart work zonedhave been deployed in\ariety of applicationssuch as the provision of retime
traveler information R, 3, 4], backof-queue warningsq, 6], and traffic managemen®| 8, 9]. Many
qualitative and quantitative benefits of smart work zones are repoftedh field deploymentssuch
as a reduction in aggressive maneuvers and crashd9[11], smoothed merging activitieg[12],
reduced speeding/] 13], increased throughput7], and reduced delaylf4, 15].

Given the increasing number of smart work zone deployments, estisdies have been performed to
summarize the lessons learned and the benefits of each smart work 26n#1] 16, 17]. Recently,
the Federal Highway AdministratidirHWA) published work zone implementation guidedifig to
determine the feasibility and design afwork neintelligent transportation systenfITS) for a given




application.The guidelinealso report that tradeoffs typically exist between theumber andtype of
work zone components, buhe guidelinedack a quantitative assessment of the tradés. A main
reason for the knowledge gap is the difficulty of collecting detailed performance data from a large
number of configurations in an active work zone.

Regardless of the application, the effectiveness of smart work zones relies on accurate and reliable
estimatesof traffic conditionge.g., traffic velocity, the back of queue, and the travel tinker

example, the estimated trafficonditions that areused to produce safetgritical messages on

portable changeable message sigRECMS) must be accurate anédible to be effective]8].

Therefore, the estimation accuracoy the traffic conditioncan be used as a metric for the potential
effectiveness of smart work zones, which circumvents the fooesuming collection of perforamce

data for mobility and safety.

The main objective of this study is to identify the key factors for improving the estimation accuracy,
by evaluating a large number of smart work zone configurationgmiceosimulationenvironment.
Specifically, the obgtives areas follows

1 To develop and calibrateraicrosimulationenvironment for the simulation of a large number
of smart work zone configurations, which vary in the number and spacing of sensors, types of
sensors, and accuracy of individual sensors.

1 Toreview and implement a variety of algorithms for estimating tregfic velocity, queue
length, and travel time, including a spatial interpolation algorithm, a sgatiporal filter
that incorporates the temporal dynamics of traffic, and a statéhe-art nonlinear Kalman
filter.

1 To quantitatively assess the influence of the number and spacing of sensors, the type of
sensors, the accuracy of sensors, and the traffic estimation algorithms on traffic estimation
accuracyto help determinethe potential efectiveness of smart work zones.

1.2METHODOLOGY

This study usea microsimulationenvironmentto simulatea large number of smart work zone
configurations and traffic estimation algorithms. The developed framework is illustrated in Bigure
The framework consists of the following key components:

1 A microscopic traffic simulation softwar&lMSUNIs used to model the work zones, simulate
the trafficat the level of individual vehicle movementnd generate detiled trajectory data
ata0.2 condgranularity for each vehicle. Timsicrosimulationmodelis calibrated using
field data to reproduce similar traffic statistic as observed in the field.

1 To investigate the influence of types of sensors and the accwfaogividual sensors,
dedicated sensor error models are developed that can generate realistic sensor
measurements from the trajectory data. Three types of commonly used sensors are modeled
in this study, namelyremote traffic microwave sensqRTMS)Doppler radar(radar), and
low-energy radarLERan example of whiclsiCone®




1 Three algorithms are implemented to estimate the tratfandition. The algorithms are
representative of thg1) spatial interpolation approaches often used in practice by state
departments oftransportation(DOTSs)(2) spatialtemporal filtering algorithms that can
incorporate the temporal dynamics of traffic, af®) nonlinear Kalman filtering methods
conventionaly applied on highways outside of work zone environmeh®s 20] by the
research community. The algorithms directly estimate the traffic velocity, from which the
length of the queue and thaavel time could be computed

1 Finally, true stateare obtained from the trajectory data for computing the estimation error
of the velocity, queue length, and travel time

In total, more than700 smart work zone deployments were simulated for assessingrpertance
of the number and spacing of sensors, the types of sensors, the accuracy of individual sensors, and
the estimation algorithms.

AIMSUN micro simulation
calibration
s K| oo
‘-
(e
I” work zone I
[ > true state |:>
simulated error
trajectory sensor metrics
data data
sensor traffic
error estimation estimated state
models algorithms

Figure 1.2Famework for the evaluation of
various sensor network configurations and algorithms.

1.30RGANIZATION OF TRIEPORT
The remainder of this report is organized as follows.

Chapter2 summarizesepresentative smart work zone deployments, existvayk zone summary
reports, and guidelines for smart work zones. Tiberature review identifisalack of a
comprehensiveguantitative, and comparative analysis on the design of smart work zones, which
motivates this study.




Chapter3 documents the development of a virtual testbed in timécrosimulationenvironment. Two
work zones in lllinois, or80 and 157, were modeled and calibrated in tingicrosimulation
environment. Prior to the calibration of work zones, an analysth@field data was conducted. The
data quality analysis revealecth incompleteness and inconsistency issues, wpiesented
challenges for the calibratn of the twowork zones. The developed sensor models for RT3y,
and LER are described in the Issbsection.

Chapter4 reviews he traffic estimation algorithms and describes the implementation of
representative algorithms in three categories with different levels of sophistication. The algorithms
are based on spatial interpolation, spatiemporal filtering, and a nonlinear Kalméter.

Chapter5 presents the evaluation results and summarizes the impact of each factor on estimation
accuracyof traffic conditions Based on the analysis results, a esiféctiveness analysis was
conducted.

Chapter6 summarizes the main findings of this study on the design of smart work zones




CHAPTER RITERATURE REVIEWSOIART WORK ZONES

A large number of studies have been conducted to summarize the benefits, lessons learned, and
guidelines for implementing smart work zones. The objective of the literature review in this study is to
summarize a list of available resources that can be used as references in the strategic design of smart
work zones. The literature review places morepdasis on the detailed configuration of the deployed
sensor network, as opposed to systéenel implementation strategies. Secti@rl focuses on
representative smart work zone deployments and summarizes the lessons leacasg istudies. Section
2.2reviews existing works on the cresstting assessment and summaszaxisting metastudiesfor

smart work zones

2.1REPRESENTATIVE SMWRRK ZONE DEPLOYNIEN

Smart work zone technologies can &gplied to achieve a variety of goals. According to the work
zone implementation guide2fl] by FHWA, smart work zones candbassified as follows

1 Realtime traveler information systems that provide congestion, delay, dtetrsative route
information to motorists

1 Queue warning systems, which provide warnings to motogbtsut stopped or slow traffic to
reduce the risk of reaend collisions.

T 58yl YAO fIyS YSNHS 42aiGSYar 6KAOHKCcdRSty I YAO!I f
smooth merge maneuvers based on the traffic condition.
Incident management systems, which detect the occurrences of incidents for quick response.

Variable speed limit systems, which dynamically adjust the speed limit to smooth traffic
through wak zones. They aim to improve mobility and/or safety

1 Automated enforcement systems, which detect speeding vehicles and enforce the speed
compliance of motorists.

1 Performance measurement systems, which evaluate the impact of the work zone based on
guantitative measures, such as the induced travel delay and the length of developed queues.

This section summarizes a representative subset of smart work zone deployments in each of the
above categories

2.1.1RealTime Traveler Information $stem

A realtime traveler information system provides traffic information to motorists, which may include
the travel time or delay, the queue length, or reroute information. Two representativetiraeal

traveler information systems are summarized next. A comprehengview of reatime traveler
information systems can be found igg].




Automated Portable Redlime TrafficControl Systems, lllinois, 2G2D02 @]

1 Objective:The primary goal of the depyed system was to estimate and disseminate the
travel delay time to motorists viportable dynamicmessagesigns (PDMS) ad the lllinois
Department of Transportation(IDOT)website. The secondary goal of the system was to
provide congestion and incident detection alettsIDOT staff.

1 System configuration: The system was deployetiah the northbound and southbound
approaclesto the work zone, covering approximately 40awibf 155. Eight portable-Band radar
unitswere used to measure the vehicle speed and presence data. Four paritzdxe circuit
television(CCTV) cameras were deployed to identify possible incidents detected by the radar
sensors. Seventeen remotelyrntmlled PDMS were used to disseminate delay and lane closure
advisories.

1 Reported benefits: Overall, no significant traffic backups occurred while the system was in
place. IDOT officiatsvere satisfied with the performanceHowever,owingto the lack of
GoST2NB¢ YR aGFFOISNE RIGlIEET y2 ljdzZyaGAadalr aaads

AutomatedWork Zone Information System, Arkansas, 23)0

1 Objective: The main objective of the system was to provide traffic information regatde
length of the queue to assist travelers in making routing decisions. The delay time was not
provided to travelerdecause of thgotential for inaccurate estimateddowever the system
could provide faster incident response.

1 System configuration: Twelve RTMS were deployed dweites to measure the traffic speed,
volume, and occupancy. The traffic information was disseminated by five PDMS c®&vering
miles, threehighwayadvisoryradios(HARS) covering 23 miles, and the projeebsite.

1 Reported benefits: The system was reported to have improved construction project
productivity byadjusting construction activity schedulasavoid theidentified peak traffic
periods. Improved incident response was also noted. It eeservedthat 90% of thdPDMS
messages matched the actual conditio&€ S FA St R S yTHeAsysterS Wdrkadiwelli S R =
and appeared to be effective in preventing and reducing+eat colisions and enhancing
O2y3SadAirzy 9yl 3aSYSyié

2.1.2Queue Warning and DetectionyStem

Queue warning and detection systems estimate the location of the back of the queue and disseminate
warning messages to approaching motorist€omprehensive review on the practices of queue warning
systems igwvailable in%], whichfound thatthe most notable benefit of the deployment of queue warning
systems is the reduction of reand crashes. This section summarizes two representative deployments of
gueue warning systems. de deployments of queue warning systems can be foun2idreg, 25].

I-57/1-64 QueueWarning System,lllinois, 201£2013 p]

1 Objective: The main goal of the system was to detect and warn approaching traffic about
slow-moving or stopped traffic.




1 System configuration: Thirtevo LERbasediCone®levices were deployedt approximatelyl
mile spacings to measure the speed of traffidteenPCMSwere used to disseminate the
gueue information.

1 Reported benefits: No quantitative benefits were reportdingto the lack of data before
deployment of the system. It was reportgkowever, thatt LINE 2 S.Ouelieved the F
systemwak St LJFdzf Ay NBRdAzOAY 3 1pdzSdzSa YR Yyl 3AyY:

I-35 End-of-QueueWarning System, Texa2013 R6, 27]

1 Objective:The main goal of this systemwhich is arrently in operationjs to detect and
predict the formation of queues and warn motorists of slow and stopped traffic af&#d

1 System configuration: The project is expected to be complet2018. Currently, the system
consists ofL7 RTMS for measuring the traffic speed, volume, and vehicle classificéfion;
pairs of Bluetooth sensors for detecting the travel time; six G&&mérador traffic
surveillance; and0PCMS for disseminating traffic informatidzg].

1 Reported benefitsNo quantitative benefit is currently reported

2.1.3Dynamic Lane MergeyStem

Dynamic lane merge systems aim to smooth flbes of traffic through the work zone by regulating
merge movements based draffic conditions. The effectiveness of dynamic lane merge system was
evaluated in §]. It was reported that the average delay per vehicle to pass through the work zone
and the number of aggressive driving maneuvers de@eadth the deployment of a dynamic lane
merge system. Two representative dynamic lane merge systems are summarized below

DynamicLane Merge System, Michigan, 2002003 [7]

1 Objective: The goals of the system included redg@ggressive driving at the merge point,
maximizing available capacity, and enhancing traveler safety.

1 System configuration: Five dynamic lane merge trailers were deployed upstream of the work
zone at a spacing of 1,500ef. Each trailer consisted ohd&RTMS for measuring the traffic
speed, volume, and occupancy, andyaamic sigrfor posting merge instructions tivavelers

1 Reported benefits: Quantitative benefits were presented in a Michigan DOT r&tpriThe
averagenumber of stops in the work zone decreased from 1.75 to (afiél the travel time
delay decreased from 95 seconds to 69 seconds during the morning peak period. The average
travel speed increased from 40 mph to 46 mph during the morning peak period. itmadd
the average number of aggressive driving maneuvers decreased from 2.88 to 0.55 during the
afternoon peak period, which consequently improved the safety

Simplified Dynamic Lane Merge Sys{&DBLMS }lorida, 2008g]

1 Objective: The primary goal was to regulate the merge movements depending orathe tr
conditionsto increasecapacity andafetyusing a simplieéd lane merge system for sheierm




movable work zones. A secondary goal was to quantitatively assesdeaweness of
simplified dynamic lane merge system usiiedd data.

1 System configuration: RTMS were used to collect the volume, speed, occupancy, and vehicle
classification data at the merging points, while PCMS were used to display proper merging
instructions.

1 Reported benefitsA sgnificant increase of the work zone capacity from 88liclehour to
970 vehcleghour using the earlymerge system SDLMS was observed. Using therlatge
strategy, the capacity increased from 881 iaddghour to 896 velicleghour, which was not
statistically significant. In general, the eanhergeSDLMS performs better at low traffic
volume and worse at high traffic voluntiean the latemergeSDLMS.

2.1.4IncidentManagementSystem

Incident management systems automatically detect the occurrence and location of the incidents for
quick traffic control response to mitigate the safety and congestion issues caused by the incidents.
Typically, traffic sensors are deployed to automaticaéyect abnormal trafficonditions andCCTV

videos are used to visually inspect and assess the incidents. Once incidents are confirmed, PCMS are
used to warn and reroute travelers to mitigate potential safety issues and prevent severe backups.

Incident marmgement can be the primary goal of a smart work zone deploymetitcan be
integrated into smart work zones with other primary goals such a2, #i.[A typical icident
management is desibed as bllows.

IncidentManagementSystem, New Mexico, 2003 1]

1 Objective: The primary goal of the system was to quickly identify incidentsfeffective
response to clear the roadway and enhance traveler safety.

1 System configuration: Eight CCTV were installed at key locations and the videos were
inspected manually in redime to detect incidents. Eight DMS, four HAR, and the project
website were used to disseminate the incident and rerouting information to teasel

1 Reported benefits: The response time to incidents reduced from 45 minutes to 25 minutes
with the deployment of the incident management systevore than60%of respondentsn a
surveyreported the disseminated traffic information was accurate and tyri2)].

2.1.5Variable $eedLimit §/stem

The variable speed limit systems aim to increase the throughput and enhance safety by providing
travelersa speed limit derived based on the curramaffic conditions. The effectiveness of variable
speed limit systems was evaluated 82[33, 34, 35|, which report increasethroughput, reduced

travel time, and an increase in speed limit compliance. A typical variable speed limit system deployed
in Utah[39] is summarized below, and more examples of variable speed limit systems can be found in
[36, 37, 38].




VariableAdvisorySeedSystem, Utah, 2010309

1 Objective: The goal of the system was to provide drivers anthdvised traffic speed based
on themeasured trafficonditionsin the work zone

1 System configuration: Five RTMS were deployed to measure the traffic speed, volume, and
occupancy at spacings ranging from 0.17 to 0.4 mile. Two variable message signseaédce us
display the advisory speed.

1 Reported benefits: Statisetanalysis showed the system was in general effective at
increasing mean speed and decreasing speed variance, thus providing smooth traffic flow
when there was a slowdown during the weekend evening peak period

2.1.6Automated Speed EnforcementyStem

Automated peed enforcement systems are commonly used to improve the speed compliance of
motorists. These systems can be deployed as a stdonk device equipped with a speed sensor, a
PCMS, and an optional camera. The effectiveness of the system variesdraezloperational
strategies used0]. In general, the system is reported to decrease the average speed of traffic,
resulting in fewer speed limit violations and improved safety. A typical stdoe speed
enforcement sgtem is summarized below, while more deployments and evaluations of speed
enforcement systems can be found #1[42, 43, 44].

PhotoRadar oeedEnforcementSystem, Oregon, 20@2009 B5]

1 Objective: The system was deployed as a demonstration project to evaluate the effectiveness
of the photo speed enforcement system.

1 System configuration: ARTMS wa used to measure the traffic speed and volume. A camera
was used to take photos of the license plates as the primary enforcement strategy.

1 Reported benefitsOn average, the speed was reduced28;7% while the photo radar speed
enforcement system was active

2.1.7Performance Measurementystem

Performance measurement systems use traffic data to quantitatively measure the impact of the work
zone project on safety and mobility, such as induceddl delay and the queue lengthd, 47]. Such
guantitative assessments can be used as inceatwalisincentive for the work zone project

contractors.

A synthesis of work zone performanogeasures was reported idg]. A performance measurement
system using license plate recognition technology is summarized below. The operational impact of
the I-35 reconstruction projecin Texasn 2012 (ongoing)wasquantified in the travel delay using
Bluetooth sensorsZ6]. The experience of using probe vehicle d@a., vehicles equipped with GPS,
Bluetooth, orElectronic TolCollectiondevices for evaluating work zone performance issteibed in

[49, 50]. A more comprehensive review of mobiliased performance measures using seven
different technologies can be found [iB1].




Work ZoneTravelTime System,rizona, 20049]

1 Objective: The main goal of the system was to measure travel time through the work zone,
which was usedb provide incentives to the contractors if the traffic delagsless than a
spedfied threshold.

1 System configuration: Two inductive loop detectors at both ends of the work zones were used
to detect the presence of vehicles, which triggered digital cameras to take photos of the
license plates. A license plate recognition algorithm wsed to identify vehicles for
measuring the travel time.

1 Reported benefits: Theystemwas able to read 8dof the license plates and match
approximately 1%of the license plates. The travel time measure helped the contractor adjust
work operations taeduce congestion

2.2ASSESSMENTS AND @UIINES OF SMART W@RINES

This section reviews the existing works summarizing the collective experiences from work zone case
studies, including evaluations of smart work zone systems, assessments of the befrsfitsrt work
zone deployments, and guidelines for implementing smart work zone technologies

A continuing effort has been devoted to the development of a knowledge database
(http://www.itskr.its.dot.gov) for documenting the ITS benefits, costs, and lessons leafiie&2,

53]. More than1,600 summaries of ITS deployments across 16 taxonomy areas have been archived
through 2014, includinghore than130 summarie$or ITS deployments work zones Twentyfact
sheeswere developedo summarize thdenefits, costs, and lessons learnadTSdeployments,
includingone fact sheet focusingpecifically orsmart work zones. The primary lessons learned across
smart work zone deployments were generally operations orierfeed., planning for sufficient testing
time during the deployment of the smiawork zong, allowing an adjustment period for travelers for
higher effectiveness of the smart work zone

A detailed literature reviewd] of 94 smart work zone deployments including queue warning systems,
dynamic merge stems, alternate routes, and variable speed limits was conducted to summarize the
benefits and typical uses of smart work zone technologies. It concludes that when more sensors are
deployed, the systems provide faster notification of changes of the tradficlitions and increase the
estimationaccuracy of the trafficonditions

A crosscutting study report 2] summarizes lessons learned from four smart work zone deployments
and identifies key lessons learned for the sucadss smart work zone system. For example, it is
concluded that is vital to deliver accurate information to the public. However, no anafytbis o
detailed design of sensor networks of smart work zones is included.

The best practices and lessons learnedthe ITS strategic planning are documentedlie|.[ The
emphasis is placed on the decisioraking processes, including agency interactions, processes and
procedures, organizational structures, and institutional involvement

The current practices for queue warning used by international agencies and state DOTSs are identified
in [54] based on a literature review ofore than40 practices and techniques. One of the reported
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difficulties of queue warning systems is the selection of locations for deployment of sensors, which
mayrelyoni KS T A St Bxpetigeshadsh@vie gk 1@ estimate where the end of the queue is
likely to be located.

A quantitative assessment of theahility and safety benefits of smart work zones is conducted using
I Ga0STF2NBé I YRITGDTORNENBYHABBXSY 4§ &HF GKS Go0ST:
data constrained the scope of the study to consider oM Wwork zone deployments.

In addition to summaries of smart work zone deployments, assessments of commercial smart work
zone systems for specific applications have been conducted. Four different smart work zone
configurations were evaluated for the accuyaaf queue detection45]. TheLERsolutioniCone®
designed for work zonesvas evaluated ing5]. A comprehensive stud??] compared 16 different
commercialy availableadvanced traveler information systenf&TIS) in 27 separate deployments
throughout the United States. Alil-step procedure was developed to assist D@choosngthe

most appropriate ATIS configuration for any given work zone. However, mgobasis was placed

on the selection of generic systepasd little information was provided on the detailed design of the
system(e.g., the number and type of sensqr®verall, it was concludetiat more-advanced real

time systems (consisting of multipteetectors and PCMS) have the greatest potential benefits in
general, buthey offered few advantages over standlone systems (consisg of one detector and

one PCMS) when traffic is liglmd free flowing.

Because ofhe distinct specifications and goatseach work zonegxisting studies commonly
summarizethe collective experiences of smart work zone deployments into guidsiarduture
implementation via a systems engineering approach. Two representative implementation guidelines
are summarized next.

An intelligent work zone toolbo)6f] was developed by Minnesota DOT, which contains guidelines
for selecting an appropriate smart work zone system for different applications. The toolbox was
intended agbbrainstorming materia andtherefore did not include detailed designs of the smart
work zone systems.

Recently, a smart work zone implementatignide L] was developed by FHWA, which summarizes
key steps for successfully implementing smart work zones via a systems engineering process. The
guidelinesreport that trade-offs typically exist between the desired systesatures and

components, whichhowever, lacks quantitative assessment to understand the implications of
different designs and work zone sensor configurations

2.3SUMMARY OF LITERABREVIEW

In general, the benefits of smart work zones have been widghprted. However, to quantify the
effectiveness of smart work zones, measurement data before and after the deployment of the system
is required, which is often unavailable in most case studies. In addition, based on the review of
reports, the data colleatin process for quantifying the impact of smart work zones on mobility and
safety was confirmed to be time consuming and often impractical.
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Based on the large number of smart work zone deployments, efforts have been devoted to
summarize the collective expgences from a variety of perspectives, ranging from the evaluation of
off-the-shelf commercial systems for a specific application and assessment of operational strategies,
to the development of a generic implementation guidelines via systems engineenmgaames.
However, very limited attention is given to subsystéel analysis on the configuration of traffic
monitoring component of smart work zonés.g., the number and type of sensors uksethe primary
reason is that traffic monitoring system configtions vary significantly across smart work zone
deployments and are typicaltjevelopedfor each specific deploymeim collaboration with

professional vendors. Moreover, collection of true traffic conditions (informally referred to as ground
truth) isextremely difficult in the fieldThe deployment expense of the systems mat@sparisons

of various system configurations costly

The goal of this study is to fill a knowledge gap in the configuration of work zone systems via the
evaluation of a large number of traffic monitoring configurations, which vary in the number and
spacing of sensors, the type of sensors, the accuracy nidl@dl sensors, and traffic estimation
algorithms. For a quantitative comparison, the accuracy ofetstenate of thetraffic conditionis

used as the performance measursecause ofts importancein effectively enabihga variety ofsmart
work zonesystemssuch as backf-queue warning, travel time estimation, and traffic advisory
information.
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CHAPTER 8&ONSTRUCTION OF RMJAL TESTBED IN
MICROSIMULATION

This study proposes to usamcrosimulationenvironment to assess a variety of smart work zone

configurations and traffic estimation algorithms. This chapter describes the development of the
microsimulationenvironment, including modeling and calibration of two work zones selected in

lllinois, the quality analysis of field data, and the developnadrgensor error models.

This chapter is organized as follows. Sec8drdescribes the selection of two work zones in lllinois
for modeling in themicrosimulationenvironment. Sectio.2 evaluates the field sensor data

available for selecting the simulation period and the work zone model calibration. S8c3ion
introduces amicrosimulationsoftware (AIMSUN and the modeling procedure of the selected work
zones. Sectiof3.4documents the calibration procedure performed for the modeled work zones and
the calibration results. Finall{he development ofledicated sensor models presentedin Section

3.5, which completes the setup of thaicrosimulationenvironment.

3.1SELECTION OF WORNEGITES

A microsimulationenvironment can simulate traffitows at the microscopic level. To enhance the
validity of the findings in this study, microsimulationthat resembles realistic traffic conditions is
highly desirable. Specifically, the traffic in timcrosimulationshould replicate traffic conditions in
the selected work zones. Two work zones were getbm colldoration with DOT: one with
moderateaverage daily traffiADT) and one with high ADT.

The selection criteria are summarized in Tehlke For modeling a work zone in tiheicrosimulation
software AIMSUN, detaitework zone geometry from the construction plan is required. Meanwhile,
field sensor data is required for calibrationmfcrosimulationmodels. In consultation with IDOT,
several candidate work zones were reviewadd the following two work zones with isxing field
deployed smart work zone systems were selected:

1 1-80 bridge repair project (IDOT Contract No. 60Y64) over the Des Plaines River in Will County,
lllinois, with an ADTof 82,000with 27% trucks This project started in January 2015 avak
ongoingat the time ofthe analysisA smart work zone system was deployed, consisting of 18
radar sensors and 12 RTMS. For the purpose of this research, Stage | of the warkagone
modeled shown in Figur&.1. In theremainder of this report, this work zone is referred to as
the I-80 work zone.

1 [-57/1-64 freeway interchange pavement resurfacing project (I@Afract No. 78276) near
Mt. Vernon in Jefferson Countyjrois, with an ADT of 33,620 with 32% trucks (20T4h)s
project started in April 2014 and is ongoiagthe time of this report A smart work zone
system was deployed, consisting of 22 radar sensorstaee¢ RTMS. For the purpose of this
research, Stage IV of the work zomas modeledshown in Figur8.2. In the remainder of
this report, this work zone is referred to as thB74 work zone.
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Table 3.1Criteria Usedor Selectionof Work Zonego Be Modela in Microsimulation Software

Purpose Doc/Data Comments
9 Length of the closed lane (taper, transition area, buffer space,
Basic qeometr construction zone).
g Y| qwidth of lanes.
9 Number of lanes.
Typical daily Construction hours on weekdays and weekends. Lane closure
Required | construction activity| information ifnot closed all day.
Modeling Speed limit Changes of spegd limits throughout the work zone and the locatid
the speed limit signs.
Typical hourly traffici, The traffic volumen the work zone with a granularity dfhour or
volume higher.
Percentage ofrucks | A rough estimation ofhe percentage of trucks.
Curvature gade, The curvature and grade may help improve the soundness of the
Desired geometry of model; thegeometry of the merge and diverge pointgy not be
merges/diverges modeled depending on its complexity.
Required Entering/exiting 9 On a typical construction day.
q traffic volume data |  With a granularity ofl hour or higher.
. 9 0On a typical construction day.
Traffic speed data . . .
'cSP I With a granularity ofl hour or higher.
. 9 0On a typical construction day.
. . Travel time data . . .
Calibration vert I With a granularity ofl hour or higher.
Desired

Queue length data

On a typical construction ddgee Chapter 4 for more discussion or]
how queue length is quantified).

Sign placements

The location and types of traffic signs placed before and through
work zone, including speed limit signgork zone warning sighsnd
lane merging signs.
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3.2ANALYSIS OF FIELDBA

The most safetygritical period in work zones is when severe congestion occurs. In addition, the
period of severe traffic congestion provides varying traffic conditions, such as queue formation and
dissipationand is suitable for testing the performance of various sensor network configurations and
traffic estimation algorithms. This study proposes to reproduce the traffic conditions in severe
congestion periods in each of the work zones. For this purpose,dliedata was investigated to

select the most congested period for modeling in each work zone. During the process of analyzing the
field data, degradation of the data quality was observed during congested periods. This subsection
documents the main findingduring the analysis of the field dasand alsoincorporates additional
information based on a discussion witie vendor of the smart work zone systenv&rMac, held on
June 82016 The methodology adopted in the data quality analysis is describedp@n8ixB.1 The

draft report submitted to IDOT oBecember 26, 201&ndforwarded to VefMacis found in
AppendixB.2

This section reports on two data quality measurd3d missing data rates, an@) sensor

measurement inconsistencies. The dsgéused in this section was obtained through the software
JamLogic, providedy Ver-Mac. The datsetincludes the velocity and count data aggregated in user
defined intervals. In tlsi project,5 minute intervalsvere consideredo provide a good balance
between data granularity and quantization error

This section is organized as follows. Sec8@nl describes the scope of the field data analyzed is th
study. The main findings are summarized in Se@iar?. Finally, SectioB.2.3 remarks on the
limitation of the data quality analysis and selects the congested periods to be modeled batesl o
data analysis findings

3.2.1Data Description

The data quality analysis was limited to the time and sensors that were considered for simulation.
Specifically, the analysis was limited to the following periods and sensors:

1 Eastbound direction of thé-80 work zone between May 1, 201and May 31, 2015This
month was selectedecausehe project started in April, 2015 and the modeling of this work
zone in themicrosimulationenvironment was conducted in June, 20IBe missing data
percentage and the sensor measurement inconsistencies were computed under different
scenarios to better understand the potential issues:

0 The entire month of May 2015.

0 An estimated peak hour between 1630 and 1T@@rsfor the entire monthin May 2015,
based on visal inspection of the speed dafatterns.

o0 Three time intervals with apparent congestion (May 1 from 1530 to 18Q0s May 3
from 1100 to 163Mours and May 7 fron®700 to 163Chours), based on visual inspection
of the speed dta patterns.

o A typical freeflow time interval (May 1, 2013rom 1300 to 153(ours).
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1 Southbound direction of the-67 work zone between November 1, 201dnd November 30,
2014 This dataetwas of interest for modelingecause othe occurrence of severe
congestion. For the data quality assessment, the missing data percentage and the sensor
measurement inconsistencies were computed in the following scenarios:

o The entire month of November 2014.

0 An estimated peak hour between 1630 and 1HgQirsfor the enire monthof November
2014, based on visual inspection of the speed data patterns from the RTMS.

o Three time intervals with apparent congestion (i.e., November 26 from 1600 to 1800
hours November 26 from 2100 to 230®urs and November 16 from 1700 to 183
hours), based on visal inspection of the speed dafmtterns.

o A typical freeflow time interval (November 18, 201#om 0600 to 110Chours).

3.2.2Data Analysig-indings

This section presents the numerical results of the data quality assessmentmpedan the dataets
in each of the work zones.

I-80 Work Zone Data Analysis

The missing data rates for thé80 data during the analyzed periods for sensors installed in the
eastbound diection are summarized in Talbe2

The following observations can be made:

1 EB9* had a large number of missing speecbrdsand count record, andwasidentified as
problematic

1 BEBllalsohad a large number of missing speedordsandno count recordsVerMac
clarified that EB11 wasstandardradar unit installed on a distinttardwareplatform (a
portable changeable message sign) that was not designed to capture counQthtx radar
units were installed on the staralone JamLogic platform and consequently recorded speed
and count d#a.

1 During the congested intervals, EB10, EB14, EB15, and EB16 each had missing data rates
above 10%, buthey hadlower missing data rates averaged over the month.

1 The RTMS EB1#4ad a higher missing data rate over the entire month compared to other
intervals consideredver-Mac provided additional analysis that indicated the causes of the
missing data included sensor malfunctiorirom May 50400 to May 61322. The additional
analysis also identified that fro®b650 to 0725 on May 28he sensor did not qgort any data,
and an adjacent sensor also did not report data during the interval. This localized failure is
consistent with a problem occurring at the nearest cellular tower (e.g., tower maintenance).

1 Sensors EB16 through EB8 experienced signifisaums during the congestion intervals.
Sensors EB7 through EB3 had less significant missing data issues, presumably because th
gueue did not extend to theilocation.
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Overallthe missing data raten the entire periodwas3% over all sensors deployechcHess

than 1%when excluding EB and EB11Themissingdatarate in congested intervals was

several timesigher, especially for radar sensov&r-Mac provided additional analysis that
indicated the missing data is more promindsgtween0500 to 0700 and 1200to 1500 Ver

Mac indicated one cause could be due to prioritization of voice communications over data
communications by the cellular provider durihigh communication traffic on the cellular
network. In heavily congested road traffic conditiomise missing data rate is also influenced

by the fact that the radar units have reduced performance at speeds less than 20 mph, and do
not record data at speeds less than 10 mph. When the communication network and the road
network are both congested, bothawy influence the missing data rate.

The quantitative data inconsistency results between sample pairs of sensc&0diod all of
May 2015 and a typical freow interval are shown in TabB3and Table3.4, respectively.
The notation@® "Q prefers to the data percent change from sen¥o Q p.

The following findings were obtained based on the stad@nalysis:

1 Asseenin Tablg3and Table3.4, the RTMS provided higher values for speed and count
measurements than the radar sensors.

1 The measurement inconsistencies occurred across two types of sensors, as well as among
radarsensors The largest inconsistency fqreed (106 t017%) and counts (28 to93%) was
observed between RTMS and radar sensors.

Table 3.2May 2015 180 Eastbound Percent Missing Data Rate

Entire Period Peak Hours Congested Intervals FreeFlow Interval
Sensor Speed Count Speed Count Speed Count Speed Count
EB3 0.41% | 0.41% 0.00% | 0.00% 1.99% | 1.99% 0.00% | 0.00%
EB4 0.44% | 0.44% 0.00% | 0.00% 3.28% | 3.28% 0.00% | 0.00%
EB5* 0.27% | 0.27% 0.00% | 0.00% 2.99% | 2.99% 0.00% | 0.00%
EB6 0.53% | 0.53% 0.00% | 0.00% 2.99% | 2.99% 0.00% | 0.00%
EB7* 0.24% | 0.24% 0.00% | 0.00% 2.99% | 2.99% 0.00% | 0.00%
EB8 0.46% | 0.46% 0.00% | 0.00% 6.47% | 6.47% 0.00% | 0.00%
EBO* 27.40% | 27.40% | | 25.81% | 25.81% | | 34.83% | 34.83% 0.00% | 0.00%
EB10 0.52% | 0.52% 0.00% | 0.00% 10.45% | 10.45% 0.00% | 0.00%
EB11 0.84% N/A 0.00% N/A 0.00% N/A 0.00% N/A
EB12* 484% | 4.84% 3.23% | 3.23% 2.99% | 2.99% 0.00% | 0.00%
EB14 0.85% | 0.85% 0.00% | 0.00% 15.92% | 15.92% 0.00% | 0.00%
EB15 0.74% | 0.74% 0.00% | 0.00% 16.92% | 16.92% 0.00% | 0.00%
EB16 0.75% | 0.75% 0.00% | 0.00% 19.90% | 19.90% 0.00% | 0.00%
Average 2.95% | 3.12% 2.23% | 2.42% 9.36% | 10.1%% 0.00% | 0.00%
AverageexcludingEB9*, EB11| 0.91% | 0.91% 0.29% | 0.29% 7.90% | 7.90% 0.00% | 0.00%

Note: the symbol * denotes an RTMS.
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Table 3.4: May 1, 2015

Table 3.3: May 2015 (1300;1530hours)
Data Percent Changen I-80 Data Percent Changen I-80
Percent Change Percent Change
Sensor Pair Speed Count Sensor Pair Speed Count
EB# EB5* 17.08% 73.79% EB# EB5* 16.31% 79.85%
EB# EBG6 3.12% 22.58% EB# EB6 1.73% 10.35%
EB® EB9* 14.23% 84.49% EB® EB9* 10.81% 93.73%
EB® EB10 8.29% 26.35% EB® EB10 6.93% 13.68%

Note: The symbol * denotes an RTMS.

I-57 Work Zone Data Analysis

The missing data rates for sensors installed in thé southboundaneduring November 2014 are
presental in Table3.5.

The following observationg/ere made

1
1

T

T

The datsetwas largely complete when the traffic was in free flow.

The radar sensors had arountkeafold increase in the missing speed data rate during congested
periods comparedvith the monthly averageOne primarycause was the slow traffspeedwhere
radar sensorfailed to detect the trafficAn illustrative figure plothg the missing data from radar
sensorsn severe congestion can be foundAppendixB.2 Figure 1.

The rate d missing data during congestion was significantly higher than the rate of missing count
data during the same time interval. This may be explained by the operational principle of sensors
(i.e., if no speed data is recorded, the vehicle counts are sett).ze

The RTMS did not have any missing speed or count records during the congested intervals, but
it had higher than average missing data rates dkierentire month compareavith the radar
sensors. As reporteth JamLogicSB7* had low battery ancbmmunication timeout issues

between November 1 and November 4, which resulted in missing 34.98% of the speed data
and 34.38% of the count data.

Table 3.5: November 201497 Southbound Percent Missing Data

Entire Period Peak Hours Congested Intervals FreeFlow Interval
Sensor Speed Count Speed Count Speed Count Speed Count
SB1 1.33% 1.20% 1.54% 0.77% 10.67% | 0.00% 1.64% 1.64%
SB2 1.15% 0.75% 3.59% 0.26% 44.00% | 0.00% 0.00% 0.00%
SB3 0.83% 0.44% 3.59% 0.26% 33.00% | 0.00% 0.00% 0.00%
SB4 0.54% 0.38% 1.79% 0.26% 16.00% | 0.00% 0.00% 0.00%
SB5 7.14% 6.91% 10.51% | 8.72% 21.33% | 0.00% 0.00% 0.00%
SB6 3.68% 3.02% 7.18% 3.85% 58.67% | 0.00% 0.00% 0.00%
SB7* 5.19% 5.00% 7.18% 7.18% 0.00% 0.00% 0.00% 0.00%
SB8 1.52% 1.01% 4.36% 1.03% 49.33% | 0.00% 0.00% 0.00%
SB9 0.31% 0.08% 2.82% 0.00% 25.33% | 0.00% 0.00% 0.00%
Average 2.41% 2.09% 4.73% 2.48% 28.74% | 0.00% 0.18% 0.18%

Note: The symbol * denotes an RTMS.
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The inconsistency assessment statistics between samples of neighboring seapoesented in Table
3.6and Table8.7. The following findings were summarized from TabGand Table3.7:

1 The count inconsistencies between sensor pairs were large regardless of the sensadittgpes.
inconsistencygan be caused hyeasurement error from sensorsgclusion(i.e., the vehicle on
the close lane blocking the vehicle on tifierther lane from the view of the sengan heavy
traffic, and the location of sensors (e.downstreamsensorglose to the work zone bottleneck
may experiencaslower traffic with daily queues).

1 The inconsistency afpeed readings between radar and RTMS pairs was relatively larger
compared to that of radagradar sensor pairs.

Table 3.7: November 18, 2014

Table 3.6: November 2014 (0600¢1100hours)
Data Percent Changen I-57 Data Percent Changen I-57
Percent Change Percent Change
SensorPair Speed Count Sensor Pair  Speed Count
SB® SB6 1.64% 23.49% SB® SB6 1.19% 28.39%
SB® SB7* 12.45% 39.64% SB® SB7* 10.38% 27.94%
SB7® SB8 10.06% 39.37% SB7® SB8 5.26% 24.24%
SB® SB9 6.06% 46.15% SB® SB9 6.93% 19.85%

Note: The symbol * denotes an RTMS.

3.2.3Summary of DataAnalysis

Based on the analysis of data in limited time periods and a subset of sensors in two work zones, the
following findings weraliscovered

1 The missing data and inconsistency issarescommon in field data, especially if collected in
noisy environmentgi.e.,characterized byargesensormeasurement errorsuch as work
zones. These issues were found in the data of both work zdweadditional analysis by \fer
Macshared with the research teashowed that theaverage missing data rate o7
decreased from 4% in 2014 103%in 2016.

1 The 157 work zone had severe (28%) missing data issues for radar sensors during the
congested intervals. TheBD work zone had bbwer missing data raté<8%)during
congestion, except for specific sensors that malfunctio(t€8io?.

1 Both work zones presented data inconsistency issues. Inconsistencies were largest between
RTMS and radar sensor pairs, where speed and count erroesded 10% and 70%
respectivelyin the 80 work zone.

A preliminarydata analysiseport was submitted to IDOT and forwarded to the vendéer-Mac. In a
follow-up meetingthat was held between the research team and \Wéac, Ver-Mac provided
valuable ifiormation on practical deployment consideratioasid additionadataanalysisThis

20



helped the researckeam analyze the souraaf sensor meas@ment errors.For example, the RTMS
are often calibrated using radar sensarsd can havéarger speed measurement erroifsan radar
doesif they are not properly calibratedwing tocalibration difficulty RTMSare typically placed in
locations where they are not expected to move (ahdreforerequire recalibration)These
constraintsare not considered intte presentstudy; however, they are practical considerations when
designing work zone systems.

It is important to nae that the missing data or inconsistent data casiskallenges for the calibration

of microsimulationmodelsin this study, as summarized in Secti@¥. The influence of missing data

and inconsistent data on the smart work zone application is algorithm and application depekdent.
exampleVerMac system produced a8 f 26 GNI} FFAOE | YR AGLINBLBNBE G2 2
changeable message sigms November 2@luringthe period whencongestion was confirmed to be
presentby field engineersThese messages occurred even in the presence of the high missing data
rates.In addition as demonstrated in the results of Sectids3, low-quality count data provided by

LER does not influenaelocityestimates when simple algorithms are used. On the other hand, it can

have a much larger influence on baakqueue estimation when used withraore sophisticated

estimation algorithm such as the nonlinear Kalman filter (see Seét8)n

It is also worth noting that thelata analysis findings this report werdimited to onemonth of data
collected by a subset of sensos comprehensive, lorigrm study is required for a more thorough
understanding ofthe expecteddata qualityin work zones across the state of lllinois.

In summary, two occurrences of severe congestion in two work zones were identified from the data
analysis and confirmed byefd engineers

1 [1-80 eastbound direction between 1530 and 18@furs onMay 1, 2015.
M1 1-57 southbound direction between 1530 and 18@8urson November 26, 2014.

3.3MODELING OF WORK ZEiN

Two documents provided by IDOT primarily used for the work zone modglingpnstruction plans,

and(2) IDOTdesign standards. The construction plans were used to identify details of the existing

road network such as road geometric design, topographylmer of lanes, location of ramps, and

speed limit. Further, the construction documents detail the work zone geometry based on the project
stage, including location of tapers, closed lanes, and closed ramps. Additional details about work zone
designs weredund in theIDOTdesign standards, including taper lengths and work zone speed limits.

In summary, the material rendered in both documents was studied to obtain the precise work zone
geometry.

The commercial simulation software selected for this projecs &iMSUN, whicluses a modified
D A LILJFdowidd: mddlel $7]. AIMSUN is a traffic simulation software developed by the company
Transport Simulation Systems (TSS). The work zones were modeled in AIMSUNsie@ fpvoces.

The first step was to model the existing road network. AIMSUN provides basic tools for manually
modeling the road network. Alternatively, it also supports importing the onlpenStreet Map
(OSM) file, which provides topological data, contairmiogd retwork informationof userspecified
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areas. The models loaded from the OSM files need to bepreessedecausehey may contairan
inconsistent number of lanes, lane widths, intersection design, road tygmesspeed limits.

The second step was to modbke work zone based on the documentation provided by IDOT. This
included activating traffic management strategies such as changes in speed limits and lane closures.
The geographical coordinates and topographic features of the OSM models were used aiestim

the location of the work zone design elements such as tapers, start of lane clpgndesnd of lane
closures.

One difficulty of this step was that AIMSUN did not formally support tapeckas those found in

work zone environments. One solution wasdrop a lane at the workone location and connect it to
the upstream road segment using a connecting node that narrowed smoothly, as shown in Figure
3.3a However, it was found that this approach produced unrealistic mgrgehaviolbecausdhe
narrowed node did not provide warning of the reduction of lanes to upstream vehicles.
Consequently, all vehicles merged to the open lane right before the work zone. The approach
adopted in this study was to model work zones as lelnsures as shown iolackin Figure3.3b,

where the sightdistance of lane closures was set to be the same as the taper length.

&

/
/

/

(a) Model the work zone Y reduction of lanes  (b) Model the work zone as a lane closure.

Figure 3.3Two approaches for modeling work zon@smicrosimulation

The modeled eastbound freeway road section near t88 vork zone is shown in Figuset.

According © the design standards followed in the work zone project, the speed limits in work zones
are 45 mph, which, however, is inconsistent with the speed data recorded by the deployed smart
work zone system onr80. This is likely due to drivers exceeding thetpd speed limit and not
because of measurement error. To capture this behavidheénwork zone model, the speed limit in

the simulation software was at 65 mph to reflect observations from the field data.
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The modeled southbound freeway road section nése E57 work zone is shown in Figuses. No
field speed data was available in the work zpaed consequently thepeed limit in the-b7 work

zone was set tthe postedwork zonespeed limit value o5 mph.

EB11 112 EB14 EB_1§__ - __5516
B0 — v L
Work zone

EB8 -

Figure 3.4Eastbound road network near the80 work zone.
The deployed RTMS are labeledlight gray; radar sensors are in black.

| SB1
| SB2
‘ SB3

| sB4

I! SB5

| SB6

Figure 3.5: Southbound road network near th&¥ work zone.
The deployed RTMS are labeledlight gray, radar sensors are iblack.
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3.4CALIBRATION OF WORBNES

The simulated microscopic traffic behavior is influenced by a large number of adjustable microscopic
parameters. Calibration of amicrosimulationmodel is the selection of a set of values parameters
suchthat the simulated microscopic traffic exhibits similar macroscopic traffic characteristics as
observed in the fielde.g., similar queue propagation spged

The objective of this study is to reproduce severe traffic congestion in selected periods in two work
zones.Therefore, a calibration step was conducted to properly select a set of microscopic
parameters.

This section summarizes the calibration process in this study. First, a literature review was conducted
to identify the standard procedure and available tofadsthe calibration of anicrosimulationmodel.

Then an automated calibration framework was developed following the standard calibration
procedure and using a nonlinear simulatibased optimization program. A sensitivity analysis for
identifying the critcal parameters to be calibrated and a validation of the developed automated
calibration framework can be found in AppendixFinally, the calibratioresults are summarized for

each work zone.

3.4.1Literature Review on Cddration of Microsimulation Models

The standard procedurr the calibration of anicrosimulationmodel can be found irbg]. In
general, the calibration procedure consists of five stgssillustrated in Figur.6:

1. Identify a set of sensitive microscopic parameters to be calibrated. Though a large number of
microscopic parameters are adjustable, only a subset of paramiteesy sensitive in terms
of influencing the traffic behavidn a specific simulation setup. In addition, calibrating all
microscopic parameters is extremely time consuming and unrealistic in practice. Therefore, it
is highly recommended to first identify a small set of sensitive parameters based on the
literature review, prior knowledge, and sensitivity analysis techniq8sq0].

2. Evaluatethe default values for the parameter§he simulation outputs usintpe default
values(e.qg., velocity or flowneasurementyare compared with the field data to compute a
measure of goodness of fit. The default parameters can be used as the benchmark for
assessing the effectiveness of the calibration.

3. Adjust the values of the selected sensitive parametBependirg on the initial evaluation
result, a subset of the sensitive parametesadjusted to achieve better goodness of fit.
These values can be manually adjusted, wHiciwever, reliesstrongly2 y G KS FyFf &ad
knowledge. Alternatively, an optimizatiggrogram can be employed to automate the
adjustment of the parameter values, which will be discussed shortly.

4. Simulate the work zone traffic in thmicrosimulationusing the new set of parameters. The
microscopic simulation is a stochastic process, andexurently multiple runs (typicallien
replications) are required to minimize tlipendency of thesimulated trafficon the random
number generator used in the simulat&@ommonly, themicrosimulationis the most time
consuming step.
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5. Evaluate the simulatettaffic using a selectenhetric thatquantifies the goodness of fit to the
field data.

Calibration of anicrosimulationmodel is generally a challenging problemingto the large number
of correlated microscopic parameters. The combination of the paransatan explode to millions,
which makesnexhaustive search time consuming and impossible in practice.

Earlier attempts are commonly based on ti@ald-error manner to manually adjust the parameters
that could reproduce the traffic condition as observed in the field. The effectiveness of the manual
calibration reliestrongly2 y (1 KS | y I f & & Ga Be ejftr¢melimeScendutingevemfor

a smaliscale network and a few parametegl].

Alternatively, automated calibration has been explored in recent years. The calibration of a
microsimulationmodel is essentially aoptimization problem(i.e., maximizing the goodness of fit of

the simulated traffic to the field observation data, by adjusting the microscopic paraneters
Automatic calibration is procedure thatemploys an optimization program in the step for searching
potentially better values for the parameter€ompared with manual calibrationyematic

calibration has been shown to be capable of significantly reducing the calibration time (from months
to hours) while achieving similar calibration accurag}.[

Identify sensitive
parameters

'

Initial evaluation
with default values

No

Adjust key
parameter values
¥
Simulate work
zone in AIMSUN
v

Evaluation
& visualization

End

Figure 3.6Procedure for calibrating anicrosimulationmodel.
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A variety of nonlinear optimization programs and commercial software have been previously
proposed for the calibration ahicrosimulationmodels. Representativalgorithms include&Simplex

[63], simultaneous perturbation stochastic approximati(®PSA)H, 65|, genetic algorithn|64], and
OptQuest66]. A comprehensive comparison of these nonlinear optimization progranteen
effectiveness of calibrating microscopic model parameters was reported in the MULTITUDE project
[66]. Recently an advancedonlinear optimization by mesh adaptive direct sea(StOMAD) §7]

software was also used for the calibration of microscopic traffic mo@&ls Considering the

software availability and the implementation effort, thesudyadopts NOMAD as the nonlinear
optimization software in the calibration process.

3.4.2 Automated Calibration Framework

This study adopted the automated calibration approach following the standard procetiorenin
Figure3.6. The nonlinear optimization program NOMAD was integrated with AIMSUN for adjusting
the microscopic parameters.

Based o an extensive literature revievb, 60, 62, 63, 69, 70, 71, 72, 73], empirical knowledge, and
a sensitivity analysis (which is described in AppeAllieight parameters were identifiedsasensitive
andassociated with twaypes of vehicles:

1 Speed acceptancsgeedAcceptangeThis parameter multiplied by the speed limit on the
road section determines the desired speed of vehicles. This parameter was found to be
sensitive only for passengears.

1 Maximum acceleratiomngaxAccél This parameter was found to be sensitive only for trucks in
stop-and-go traffic.

1 Sensitivity factorgensitivityFactor This parameter represents the estimation of a vehicle on
the deceleration rate of its leadingehicle. By setting this parameter below or above 1, the
following vehicle underestimates or overestimates the deceleration rate of the leading
vehicle, hence being more or less aggressive. This parameter was found to be sensitive for
both car and truck tges.

1 Reaction timergactionTimé. This parameter is the time for a driver to react to speed changes
in the preceding vehicle. This parameter was found to be sensitive for both car and truck

types.

1 Minimum headwayrfinHeadway. This parameter determineseéhminimum headwayi.e.,
the time differenceof two consecutive vehicles passing the same locatdm vehicle to its
preceding vehicle. This parameter was found to be sensitive for both car and truck types.

The objective of the calibration inihstudy is to reproduce the severe traffic congestioraiapecific
period in the work zones, instead of developing a genetiatosimulationmodel. Therefore,
considering the significant amount of time required in the simulation step, only one replication was
simulated for each set of parameters.
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Theroot-meansquare errofRMSE) was selected as the error metric considering its reliable
performance for measuring the goodness of @6]. Because there waslack of highquality flov

data from the deployed work zone sensors as reported in Se8t@ronly the velocity data was used
in the error metric to calibrate thenicrosimulation

The inflow to the modeled freeway section was manually calibra@sked on the flow measurement
from the first sensor in each work zone. The truck ratio, theamp and offrampflows were
determined using the lllinois online databaskp://www.gettingaroundillinois.com/
gai.htm?mt=aadtandhttp://idot.ms2soft.com/tcds/tsearch.asp?loc=ldot&mod=

The developed automated calibration framework was validated in a synthetic workdasteibed in
AppendixA.2 where the true values of the calibrated parameters were known. The validation results
showed the developed framework could effectively improve the goodness of fit of the simulated
traffic to the field data. Meanwhile, the validation results confirmie difficulty of the calibration of
microsimulationmodels Owingto the nonlinear correlation between parameters, different
combinations of parameter values can achieve similar goodness of fit, Wactbeen previously
identified [66]. As a result, the combination of extreme values for two parameters may produce
reasonable macroscopic traffic characteristics. However, such extreme values are less desirable
though the orresponding goodness of fit may be optimal. Therefore, after the automated
calibration, a final selection step should be performed among the besteaitbrated parameter
valuesto select a set of plausible parameters based on empirical knowledge.

3.4.3Calibration Results of Two Work Zones

The calibrated values for the parametersie I-80 work zone after approximatelyd0O0 iterations
and the final selection are summarized in Takk& The calibrated values achievadapproximately
40% reduction in the speed RMSE compaxétti the default values.

Table 3.8CalibratedValues for the 80 Work Zone

Parameter Default Value CalibratedValue
carspeedAcceptance 1 1.09

truck maxAcce(m/s?) 1 0.82
carsensitivityFactor 1 0.5

truck sensitivityFactor 1 1.02
carreactionTimg(s) 0.8 0.6

truck reactionTimgs) 0.8 0.8
carminHeadway(s) 0 1.5

truck minHeadway(s) 0 2.5
speed RMSE 283.2 168.3

m: meter; s: second
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The calibrated values for the parametens F57 after approkmately 800 iterations and thinal
selection are summarized in Tald®. The speed RMSE for the calibrated value decreasedlyB%
comparedwith the default value. The main reason for the insignificaduction of the RMSE was
the high percemigeof missing data during the congested period as identified in Se8t@n

Table 3.9CalibratedValues for the 157 Work Zone

Parameter Default Value CalibratedValue
carspeedAcceptance 1 1.1

truck maxAcce(m/s?) 1 0.9
carsensitivityFactor 1 1.0

truck sensitivityFactor 1 1.0
carreactionTimg(s) 0.8 0.6

truck reactionTimg(s) 0.8 0.8
carminHeadway(s) 0 2.0

truck minHeadway(s) 0 2.0
speedRMSE 337.8 310.4

m: meter; s: second

3.5SENSOR MODELS

Themicrosimulationsoftware AIMSUN allows errdiree sensors to be placed in the simulation
environment, butit lacks realistic traffic sensor error models representative of sensors deployed in
work zone environments. Alternatively, AIMSUN can export the trajectory data at a fine granularity
for each vehicle, which allows the development of customized sensorssédtien presents how
microsimulationtrajectories are used to generate noisy traffic sensor data that reflects the true
errors observed in the field.

3.5.10verview of SensoiTypes

To better assess how different types of sensors featuring distinct measurement errors affect the
traffic estimation accuracy, realistic sensor modetse developed to degrade the simulated traffic
measurements to be consistent with the data quality obsehin practical field deployments. A large
variety of sensor technologies have been applied to traffic monitotirtgrested readers are

referred to theTraffic Detector Handbodk 4, 75] for the comprehensive description and evaluation
of traffic sensor technologies. In this study, three types of sensors commonly used in work zones
were modeled Doppler radar, LER units (eig:pne®&ensor), and RTMS.

Doppler radarljeretoforereferred to agadar) iswidely used in traffic sensingecausehe

technology isnature andthe cost idow. Doppler radar raéson the Doppler effect for measuring the
velocity of vehicles, and provides accurate velocity measurement for vehicles glésan1 mph

[76]), although performance degrades at lower velocitiebere the Doppler shift is not as
prominent. The traffic flow data is obtained by counting the number of velocity measurements
recorded during each det#ion cycle. For best performance, Doppler radaits are commonly
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mounted relatively low to the groundagninimum 3 feet [76]). Consequently, the sensor is prone to
occlusion issues (e,gvhere one vehicle blocks anothegehiclein an adjacent lan&om being

detected by the sensor), which may result in biased velocity and flow measurements when deployed
on multiHlane freeways.

LER units are deployedtiaffic control drumgfor ease of deployment, buhey havelimited battery
capacityavailable for detection. Fdongterm deploymentsa basicmperationalmode of sensors
consists of the sensor operatifigr only part of eachdetection cycletfpically30 seconds of
detection in a 60 second detection cycper a 201Q@echnical report [55). Consequently, these
sensors have measurement erraisilar to those found witliadar units for velocity and count data,
as well asn additional sampling erroelated tothe discontinuous operation.

The RTMS measures the distate®bjects in the path of its microwave beahence itis able to

detect moving and stationary vehicles in multiple detection zones (lanes). The RTMS is commonly
mounted in an elevated position (at least & [77]), which reduces the occlusion potential and
increases the counting accuracy compavéth lower positionedsensorsWith proper field

calibration, the RTMS produces velocity measurements with 10% error, with larger velocity errors in
heavy congestion/[/].

3.5.2Generation of Noisy Measurements

A multistep process is used to convert the detailed trajectory data from AIMSUN into noisy sensor data to
mimic the field data collected from the sensors described above. The first stegatermine which

vehicles pass through the detection zone of a given sensor. The detection zones for each sensor are
modeled based on the recommended installation guidelii@dnd the reported field of view. For

example theradarand LER sensors are aimed at oncoming traffic, resulting in a detection zone
approximately 140det upstream of the senspas shown in Figur®.7. The detection zone of the LER is
assumed active for only the firsalf of the detection cycle, resulting in the detection of only a subset of
vehicles. The RTMS detection zone is located at the installation point. For a given detection cycle, the
vehicles that pass through the detection zone are potentially availalentribute to the average

velocity or count measurements.

- o e Do - e - - -

l . Sensing area @
. Radar sensor unit

Figure 3.7: lllustration of an occluded vehicle
caused by the presence of vehidiin the detection zone.
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The next step is to discard any vehicle that passes through the detection zone whose trajectory is
occluded by another vehicl@sillustrated in Figure.7, two vehicles, labeled andB, travel through
the sensing area irhe outsidelaneand inside langrespectively. Vehiclé is considered occluded if
more thanp, percent of the trajectory of vehicla overlaps with the trajectory dB in the detection
zone. The parametai; is selected ag: =30%which results in the occlusion of approximately 40% of
vehicles in heavy congestion. Occluded vehicles are remioveddarand LER sensors, while RTMS
are assumed to be mounted a position to prevent occlusion, but the count is still perturbed by a
counting error consistent with the reported accuracyr].

After occluded vehicles are removed, any vehicle with a velocity outside the measurement range of
the sensor is also discarded. Ttaelarand LER sensors have a measuent rangeof 5~99 mph [/6],
while the RTMS has a range eflQ0 mph [7].

For vehicles that remain, the measured velocity is assumed to be a reading of the true vehicle velocity
perturbed bymeasurement errorMeasured velocities are constructed by adding a measurement

error generated fromi T, to the true velocity, wherg takes two distinct values in frelow and
congested traffic. For the radar and LER sensoischosen such #t the true vehicles are measured

with an accuracy of 1 mph, while the RTMS velocities are measured to within 10%. At low vehicle
velocities, the errors are increased to 2 mph for radar and LER, and 15% for the RTMS devices. Note
that although the measureemt error is assumed unbiased, the average velocities and counts are
biasedbecause othe sample set (i.e., removing occluded vehicles, which are predominantly from the
faster lane of traffic). Finally, the harmonic mean of the noisy velocity measurensaiadeen as the
average velocity reported by the sensor, and the number of measurements is the count.

To model the realistimissing data rates that occur in field deployments, a subset of measurement
detection cycless also discardegresulting in no data available for estimation during the cycle. Up to
15%o0f the data from the radar and LER sensors 3¥#af the data from RTM&redropped induring
congested conditionsbased on the missing data rates observed from work zone fielliddtlinois.

30



CHAPTER 4: TRAFRBTIFIATION ALGORITHMS

This chapter is devoted to the description of the traffic estimation algorithms implemented for
estimating the velocity, queue length, and tratiehe. Consider a segment of roadway of length
containing a work zone, observed over a period of tifd& he velocity along the roadway is denoted
0 O, wheredN TmHYandwN T . If a queue develops on the segmémgicause of bottleneck
created by the work zone, the length of the quasalenotedad 0 1t Finally the travel time of a
vehicle entering the roadway at timeraveling the length of the road segmeitis denotedt 6. In

this study,the velocity along the roadway is directly estimated, which is then used to estimate th
travel time and the length of the queue when it occurs. The evaluated traffic estimation algorithms
are described nextMore technical details can be found in Appendix C.

4.1 SPATIAL INTERPOLAN'1O

A common class of algorithms infer the traffic conditions along the roadway by spatially interpolating
the measurement data obtained from sensors. Such strategies inclagtant interpolation[ 78],

min interpolation[79] adopted by the Texas DCaveraging interpolatior80], the mid-point
algorithmadopted by theChicagd>OT[81] and Wisconsin DO81], and thethree-segment
algorithm[82]. More sophisticated interpolation strategies, such as linear interpoldi@3and

guadratic interpolation84] hawe also been proposed.

Considering the performance and ease of implementation, the linear spatial interpolaéien

selected as a representative interpolation algorithm for further evaluation. To estimate the velocity
0 oo between a pair of sensors located@tandc G with corresponding measured velocities
0 andu , the estimated velocitp i for N Gty iscomputed agollows:

o(t,x) = —2—Z 5y (t) + (1 B R ) Ba (t).

To — I To — I (4_1)

The same process is repeated for each pair of adjacent settsolgain the estimated veloojtfield
throughout the spatialomain.

4.2 SPATIGTEMPORAL FIERING

One criticism of spatial interpolation algorithms is that they do not directly account for the spatio
temporal dynamics of traffic. A number adsearch aiitleshave deeloped algorithms that attempt
to circumvent these limitations.

A two-dimensional interpolation algorithm for speedap reonstruction and travel time dégnation
was proposed ing5]. This algorithm produces speed estimates at any paib as a weighted
average of four neighboring sensor measurements in the #p&ce domainthat is,a point of
estimation between two sensor deployments (in space) and two sensor reports @i fline weight
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of each measurement is a function of the distance to the point of estimation. This results in a smooth
speed surface that is then used to reconstruct vehicle trajectories.

A trajectory reconstructiogbased methodvasexplored in 86]. That algorithm relies on firsbrder

traffic flow theory to extrapolate traffic states at sensor locations to an extended segment of road
The general idea is to reconstruct vehicle trajectoriesgisiiscrete speed observation§vehicles as
they cross the sensor location. Each observation is assumed representative of the speed state in a
subset of the timespace domain, with a width delimited by the headway between vehicles and
projected in time and space (upstream or downstreaf the sensor location) baseth wave
propagation speeds. Once a new observation arrives, the next subset of thepace domain is
determined and the speed state is updatéthe vehicldrajectories are reconstructed by
concatenating the projected tr&t states.

A kernel smoothing technique that incorporates traffic dynamics was develop@&d]inTis type of
algorithm was further adapted to the context of heterogeneous data soui@&8p]. More
importantly, it was improved ind1] to avoid structual bias in travel time estimn.

The main idea of this family of spatiemporal estimators is to estimate traffic speashich isequal

to the inverse ofthe traffic pace) using a weighted average of the available sensor measurements.

The weight of each measurement is given by an exponential decay function that penalizes
measurements that are distant to the point of estimatidrhis distance, however, is offset in the time
dimension to account for the propagation of traffic waves. An underlying assumption is that the

traffic wave propagation velocity is constant for a given traffic state. Because the traffic wave
propagation velgities in congestioandfree flow differ, two estimates are producedne assuming

free flow and one assuming congestion. The final estimate is obtained as a convex combination of the
free-flowing and congested estimates.

Considering the scalability, robtness and ease of bne implementation required for this research,
the filtered inversespeedbased estimation algorithm proposed by Van L81f] wasselected as
representative of the spatibemporal estimatioralgorithms.

The selected parameter values for the implemented sptimporal algorithm can be found in
AppendixC.1

4.3KALMAN FILTER

The Kalman filterd2] is an algorithm used to estimate the state of a linear systerodogecting a
modetbased prediction with measurement data. The Kalman filter and its nonlinear extensions
necessary for traffic estimation can be understood by posing the model and sensor measurement
processes in state space form as follows:

{ L J_"(:l:n) + 0",
g =H(z") + " 42)

The firstline in Equatiord.2is known as the evolution equation, whegkis the traffic state vector at
time step¢ to be estimated, denotes the traffic flow model used to predict the traffic state at time
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¢ given the traffic state attimé  p, and-* D mh|- is a white noise process with covariange
The secondine in Equatiort.7is the observation equatiothat relates the vector of measurements
o3 received at time with the traffic state variabless through the measurement model . The
random variablé D 1 denotes themeasuremenerror distributionandis modeled as white
noise with covariance . The Kalman filter and its nonlinear variants are sequestte estimators
that are optinal estimators (in the best linear unbiased sense) of the statgven a sequence of
measurementsJtE 58

Considering the nonlinearity of the traffic models, a numbkvariations of Kalman filtdrave been
explored for estimatiorof the traffic conditionsincluding theextended Kalman filte(EKF)19], the
unscented Kalman filtefUKF) 93], the mixture Kalman filte(MKF) 94, 95|, the particlefilter (PF)
[96, 97], and theensemble Kalman filtefEnKF)J8].

EKF relies on the linear approximation of a nadinsystem, and has been used to estimate the
traffic density L9, 99]. The computation of the Jacobin matrix in the linearization step is in general
computationallyheavy;hence a simultaneous perturbation technique was propos&a( to

improve the efficiency of the linearization step.

In the traffic estimation, the nonlinearity of the traffic dynamics comes from the nonlinear
relationship betweerthe flow and density. The empirical nonlinear relationship, known as the
fundamental diagram, can be approximated by a piecewise linear function. Physically, this indicates
the nonlinear systemEquation4.2) consists of several modése., free flow orcongested under

which the system is linear. Based on this observation, the MKF was pro@zs88,[101] to model

the traffic as a switched state system.

Thelinear approximation of the EKF can give poor performance for a nonlinear system, and the
piecewise linear assumption on the fundamental diagram. Therefore, 108FHas been developed
based on a deterministic sampling tetue to estimate the propagation of the error covariance
matrix, which does not requerthe linear approximation aissumption.

A more general approach is the Monte Carlo based®BRJ, 103], which can be applied to generic
nonlinear systems with possibly n@aussian distributions. Comparedth the UKF, PF gives higher
estimation accuracy but at a cost of computationally expensi@d][ Assuming all probability
distributions associated in the system are Gaussian, EBBA.Q5 can achieve similar performance
asPF and is more computationalficient.

In summay, the EKF, MKF, UKF, EnKFaelinearization of the systerfor closure assumptions on
the state error distributions, while the PF is a fully nonlinear Bayesian estimatocdahdie
computationally expensive for large systems. Consequently, the Enjflesnented as
representative filtering algorithm for work zone traffic state estimatidaore technical detaibf the
EnKRalgorithmand its implementation can be found Appendix C.2.

4.4BACKOFQUEUE AND TRAVEL EBSTIMATION

In this study, givenraestimate of the velocity i in space and time, a standard approach across
algorithmswasused to estimate the length of the queue and the travel time.
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Algorithms specifically for queue estimation have also been previously developed. A classachppr
is to estimate the queue length based on the cumulative inflow and outfld®,[L10], which is
however,sensitive to the length of the road and the measurement error of sensors. Higieere

length estimation accuracy can be achieved with madeanced techniques, such as incorporation of
the queuing dynamicslL1] and the Kalman filter][12].

For fair comparison of the imginented algorithms covering three levels of sophistication, the queue
length is computed based on the estimated velocity field. Specifically, the estimated length of the of
the queued 0 is determined as the maximum length of any consecutive segmeheimelocity field
such thatd oo | , wherel is a threshold denoting congested traffic velocities. In this study,
wasselected as 40 mph.

This study uses the spedxhsed travel time estimation method 13] considerimy its simplicity. The
travel time is computed using anstantaneoug114] travel time estimate:

L
T(t) = f 1/o(t, x)dx.
0 (43)

The instantaneous travel time is valid under the assumption that the velocity field is constant over
the time interval o 1 6 , which may fail in scenarios with rapid queue growth or dissipation. The
primary benefit of the instantaneous travel timethat it does not require the future traffic state to

be predicted. Other statistad travel time estimation and prediction models using historical data are
discussed in][15, 116).
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CHAPTEB: COMPARATIVE ANALYSIS

This chapter summarizes the key findings based on the quantitative comparison across various sensor
network configurations and traffic estimation algorithms. A subset of the simulation results from the |
80 work zone are visualizeohd discussed in this chapter to justify the findings. Similar findings were
obtained from the 457 work zone, and the complete simulation resialts includedn AppendiD.

5.1 TRAFFIESTVMATIONERROR METRICS

The errommetrics used to assess the performance of the various estimators are briefly desdiobed
calculate the errors, the true state to be estimated is first calculated from the AIMSUN trajectory
data. The true velocity field (Figuteld), true queue length (Figure 1b), and true travel time (Figure
5.19 are constructed on a finely discretized spagmporal grid withd ¥ pF8 4 ¢ o, Space cells

of length50 nmetersandé N pheadE 4 ¢ o time steps withaduration 5 £conds Within each grid the

true velocityd ¢hd A & O2 Y LIzl SR dza A ¥19]. TAeRrkeSraval tirkdS & fs jalkeli ds2 v &
the average tavel time of all vehicles entering the roadway during the time stepnd the true

length of the queuear ¢ is computed as the maximum length of a space segméthta velocity of

less than 40nph.

The mean absolute errofMAE) is used as the error metric to quantify the estimation accuracy. Four
types of MAE errors are computed, namgfi) Q , the MAE the estimated velocity over the entire
spatiotemporal domainf2) Q , the MAE of the estimated velocily an ar@ near the back of the
gueue(i.e.,the error of the velocity in an area defined 1.5 milearound the truelocation of the
backof the queus; (3) Q, the MAE of the estimated queue leng(d) Q, the MAE of the estimated
travel time.

Specifically, given the estimated velodity it , the MAE of the velocity estimates over the entire
time-space horizon is defined é&slows:

m’!?? axr n’l’?? ax

€y = ——— Z Z|vnm—v(nm)\

nnl&l‘ LTT].(I,.’L‘ m=1 n=1 (51)

The metricQQ measures the average estimation accuracy of the velocity theentire spatio
temporal domain. However, the most safetyitical area is the r@a around the location of thend of
the queue, where accurate velocity estimates are most desirable. Therefore, the M&Baty
estimates around thgueueQ is introduced:

Nmaz M+ (N)
Z Z |0(n, m) — v(n,m)|,
n=1 m=m_(n) (5.2)

whered & & denotes thet 0.5 mile location of the end of the queue at time stepThe
summation of the absolute error is averaged over the number of dellsvolved in the computation.
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(c) True travel time over 2.5 hours. The true travel time was not
obtained in the last period because vehicles that entered the sEgmentafter
approximately 2 hours did not exit before the simulatiooged.

Figure 5.1: True state of the (a) velocity field, (b) queue length, and (c) travel time
obtained in simulation for 180 over 5 miledbetween 1530and 1800hourson May 1, 2015.
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Similarly, the MAEs of the queue lend¥and the travel timeQ are defined agollows:

1 nTna;r. .
(o= —— > i) ~1(m)],
max n=1 (53)
and
1 n‘rn,a:r
er = |7(n) — 7(n)|.
Mmaz = (5.4)

5.2ALGORITHMS AND SERSEPACINGS

In the first set of experiments, the influence of the sensor spacing and traffic estimation algorithm on
the travel time, queue length, and velocity estimation error analgized. For each algorithrhl

spacings ranging frorty8 mile to 5miles are considered for80. All sensors are assumed to be RTMS
in these experiments. Similar findings anade forother types of sensors anuh I-57, which are

attached in Appendix D

For each experiment, the MAE on the velocity estimate is computed both as an average over the
entire spatietemporal domain, as well as in the area immediately around the true back of qtteue (
0.5 mile) as identified in AIMSUN. The resulting errors aadi@in of the algorithm type and sensor
spacingareshown in Figure5.2and Figures.3. As expected, as the density of sensors increades
algorithms result in lower velocity errors, with the best performance (about 5 mph error overall and 6
mph around the queue) by the linear interpolation algorithm with sensors placed every 1/8 mile. Not
surprisingly, all algorithms perform worse in theighborhood of the queue comparedth the MAE
reported over all space and time, which is unfortunately where the errors may be most-satatsl.

The spatietemporal algorithm has the highest error around the queue, which results in higher total
MAEcomparedwith the spatial interpolation algorithniNote that the algorithm was originally

proposed as an offline algorithr8]], and the performance may change if additional measurement
data is available for smoothing. Atryedense sensor spacings, the EnKF performs worse than the
interpolation and smoothing algorithnizsecausdhe velocity is computed from the density estimate
through @.9) rather thanbeingdirectly estimatedas in the betteperforming algorithms. However,

in the neighborhood of the queue, the EnKF localizes the queue more accuvatéti generally

results in higheqquality velocity estimates in the neighborhood of the queue.

The general trend of the MAE for the queue lédmgstimation (Figur®.4) is similar to thevelocity
MAE. This is a direct result of the fact that the queargth is estimated fronthe velocity field, and
consequently improvements on the velocity field result in betteegg length estimates. The true
maximum true queue length during the simulation is approximately 3 milesfic in the queue is
characterized by speeds less than a threshold speed, set as 40 mph in the present seuEpKF
uses a traffic model andsesthe flow measurements from RTMS to consistently outperform the
other estimatorsacross a wide range of sengpacings.
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Figure 5.2: MAE of the velocity field over the entire spatemporal
domain using RTMS across a range of spacings.
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Figure 5.3: MAE of the velocity field around0.5 mile of the location
of the end of the queue using RTMS across a range of spacings.

Finally, the MAE of the travel time estimatioxer a 5mile distancas shown in Figurg.5. The travel
time of the road section in free flow is arouddninutes and the longest travel time during
congestion is 40 minutes. The EnKF is generally thegeekirming travel time estimator, and
offers slightly improved performance over theagpp-temporal smoother. Recathat the spatic
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temporal algorithm directly estimates the pace of traffie., the inverse of traffic velocityyvhich
results in a better estimate of the travel time than the purely spatial interpolation algorithm. The
MAEfor travel time is relatively large for all algorithms independent of the spacing, and the largest
source of error is due to the use of the instantaneous travel time calculdiiqudtion4.21), not the
underlying velocity stimate. In fact, the true instantaneous travel time has MAE ofmore than 6
minutes, which is comparable to the MAE observed in the travel time estimates of the best
performing algorithms. In traffic conditions with slower dynamics (e.qg., in free ftaw complete
congestion), the use of the instantaneous travel time may result in lower errors.

10 MAE of queue
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c
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Figure 5.4: MAE of the queue length estimation usiRgMS across a range gfpacings

5.3TYPE OF SENSORS

In the next set of experimentthe influence of the sensor type (i.&TMSradar,andLER) and the

errors they introducevere compared across algorithmRecall that the RTMS offers the lowest

guality velocity measurement of individual vehicles but provides more reliahlatadatathanthe
radarbased sensors. The MAE for the estimated traffic velocity, the queue length, and the travel time
are shown in FigurB.6a Figures.6b, Figures.73a Figure5.7b, respectively, for sensors placed at a
spacing ofl. mile.

To understand the potential benefit of improved sensor technologies, traffic estimates using an ideal
sensor are also generated. The ideal sensasssimed to have zero error (i.e., it measures the

velocity of every vehicle exactly and has no occlusion or dropped padketsgshavea

guantization errotbecausehe count and velocitare computed within a single detection cycle. For
example, if theaggregation interval is 3@sonds the quantization error (e.g., including or excluding

a single vehicle near the cycle boundary) introduces a change in the flow of liz@ghlour/lane.
Algorithms running with measurements from the ideal sensor halecity, queue, and travel time
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errors that are similato those ofthe RTMS, which indicates that quantization error is the largest
source of remaining error from the existing sensors.

Figure 5.5MAE of the travel time estimation using RTMS acrossage of spacings.

The analysis also indicates that the EnKF algorithm is the most sensitive algorithm to the sensor type,
andit provides the poorest velocity estimates when combined with LER sensors. This is due to the
reliance of the EnKF algorithm oocarate flow data, which is degraded in the LER deVieeause

vehicles are recorded famly a portion of the detection cycle (resulting in increased quantization

error), and the counts are prone to larger occlusion errors. Across all traffic quaatitieal|

algorithms, the radar and RTMS offer at least as good or batteuracyperformancethanthe LER

devices. The use of LER devices may still be warrdteel cost of the LER allows more sensors to be
deployed compared to RTMS or radar systems

5.4 ACCURACY OF SENSORS

The third set of experimestwasto compare the influence of the accuracy of individual sensotis
the estimation accuracy.

Synthetic sensors that may be available in the future were simulated for the Raté®,and LER
sensosk. The synthetic sensors feature reduced the standard deviation of the measurement noise
(more-accurate sensors) and the missing data rates (more reliable sensors). For example, a sensor
RTMSx2 denotes a synthetic RTMS whose measurement noise and the pgeceimaissing data are
reduced by a factor of 2 from the currently available RTMS in the market. In total, seven synthetic
sensors were simulatedRTMSx2, RTMSx4, RTMSx8, RADARX2, RADARXx4, RADARRS2. In
addition, an ideal type of sensor without msuranent error was simulated to assess the maximum
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