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EXECUTIVE SUMMARY 

Federal regulations (23 CFR 630 Subpart J, 23 CFR 630 Subpart K) place emphasis on smart work zone 
technologies within and around work zones to improve safety and mobility. Given the increasing 
number of smart work zone deployments, cross-studies have been performed to summarize the lessons 
learned, and work zone implementation guidelines were recently published by the Federal Highway 
Administration (FHWA) to assist departments of transportation (DOTs) in determining the feasibility and 
design of smart work zones for a given application.  

Two critical components for the success of a smart work zone deployment are the quality of the traffic 
data collected by sensor networks and the algorithms used for data processing, which, when combined, 
provide real-time traffic information in the work zone. Accurate and reliable traffic estimation is the 
basis for many smart work zone systems regardless of the specific application. For example, the 
effectiveness of a portable changeable message sign (PCMS) is reduced if the message does not 
accurately correspond to current traffic conditions. Therefore, the accuracy of the traffic estimation can 
be regarded as a critical metric for the potential effectiveness of smart work zones.  

Using the estimation accuracy as a metric of the potential effectiveness of work zones, this study 
focuses on quantitatively evaluating a large variety of sensor network configurations and traffic 
estimation algorithms in microsimulation to obtain insights on best practices for designing smart work 
zone systems. Two work zones located on I-80 in Will County and I-57 in Jefferson County were 
modeled and calibrated with field data in the microsimulation environment. Dedicated sensor error 
models were developed to generate realistic measurements corresponding to Doppler radar sensors 
(radar), remote traffic microwave sensors (RTMS), and low-energy radar (LER).  

To assess the importance of algorithms for the estimation accuracy of the velocity, queue length, and 
travel time, three algorithms with different levels of sophistication were implemented: (1) spatial 
interpolation used in practice, (2) spatio-temporal filtering, which integrated a smoothing component in 
the temporal horizon, (3) and a traffic flow model–based nonlinear Kalman filter. To identify the critical 
factors on the sensor network design in a smart work zone, 242 different configurations of sensor 
networks were quantitatively assessed, each with three algorithms that varied in the number and 
spacing of sensors, the type of sensors, and the accuracy of individual sensors. 

In summary, this study assessed 726 combinations of sensor network configurations and traffic 
estimation algorithms. The main findings are as follows: 

 The spacing of sensors is an important factor for improving the accuracy of traffic estimation, 
especially at a large sensor spacing (e.g., 1 mile). When the sensor spacing is smaller than 0.5 
mile, the benefit of additional sensors or the choice of algorithm is marginal (i.e., less than 5% 
improvement per sensor). 

 The nonlinear Kalman filter generally provides significantly more-accurate estimation of the 
velocity, the queue length, and the travel time compared with other algorithms when the 
spacing of sensors exceeds 1 mile. It has the potential to reduce the cost of the existing sensors 
by approximately 50% while achieving the same level of traffic estimation accuracy. However, 
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the performance of the nonlinear Kalman filter relies on the appropriate selection of algorithmic 
parameters, which requires field data collection and expertise to apply the technique. 

 The RTMS provides more-accurate flow measurements than radar and LER because of its less 
prominent occlusion issue. The accurate flow measurement can significantly improve the 
estimation accuracy of the nonlinear Kalman filtering algorithm. The spatial interpolation and 
the spatio-temporal filtering algorithms use velocity measurements only; hence, they have less 
accuracy variation across three types of sensors. In the cost accuracy analysis, the radar sensors 
are the most cost effective for estimating the velocity and queue length. At the same system 
cost, the additional number of radar sensors (a lower unit price allows more to be installed) 
provides higher improvement of the estimation accuracy than using more-accurate but fewer 
RTMS. It should be noted that the cost accuracy analysis was conducted based on limited cost 
data. It is recommended that the cost accuracy be re-assessed, given the updated cost data for 
each specific deployment. 

 Existing sensor technologies are sufficient for good performance across all algorithms 
considered, and little additional benefit can be expected from improvements of the quality of 
individual sensors because measurement error is dominated by the quantization error and 
errors related to occlusion (for radar and LER). This finding is based on the assumption that all 
sensors are properly calibrated to achieve the error magnitudes as specified by the sensor 
manufacturer specification and operate reliably. More benefit can be achieved by improving the 
reliability of sensors instead of increasing individual sensor accuracy. This conclusion is made 
based on the rate of significant missing data during congestion in the field dataset in a work 
zone where no traffic estimation algorithm can produce accurate traffic estimates. 

 All classes of implemented algorithms perform relatively poorly on travel time estimation owing 
to the use of the instantaneous travel time estimation scheme. The use of Bluetooth sensors will 
not improve travel time estimation accuracy when the travel times are quickly changing. This is 
because the sensors only record the travel time of the vehicle that just completed the trip, 
which may no longer be a good estimate of the travel time of the vehicle just entering the 
stretch of roadway. Analytics with the capability of travel time prediction for smart work zone 
monitoring systems are recommended to obtain a better travel time estimation. 

The findings in this study are intended to 

 Help DOTs in their decision-making process regarding the acquisition of smart work zone 
systems. 

 Assist vendors working with state DOTs on the development of improved systems for smart 
work zones. 

All source code developed in this study can be found at https://github.com/Lab-Work/ IDOT-
SmartWorkzone. 

  

https://github.com/Lab-Work/IDOT-SmartWorkzone
https://github.com/Lab-Work/IDOT-SmartWorkzone
https://github.com/Lab-Work/IDOT-SmartWorkzone
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CHAPTER 1: INTRODUCTION  

1.1 OBJECTIVE OF THE STUDY  

Smart work zones aim to improve work zone safety and mobility through the integration of traffic 
sensors, estimation algorithms, and traffic management strategies. As illustrated in Figure 1.1, a 
smart work zone [1] normally consists of (1) a sensor network to measure current traffic conditions in 
and around the work zone; (2) a data processing algorithm to process the raw data and estimate 
work zone quantities of interest (e.g., the back of the queue, the average velocity in the work zone); 
(3) output devices that disseminate traffic information to the appropriate consumer (e.g., drivers or 
departments of transportation) depending on the application; and (4) a communication network that 
connects the individual components. 

 
 

Figure 1.1: Architecture of smart work zones. This study focuses  
on the assessment of network configurations and data processing  
algorithms for estimating velocity, queue length, and travel time. 

Smart work zones have been deployed in a variety of applications, such as the provision of real-time 
traveler information [2, 3, 4], back-of-queue warnings [5, 6], and traffic management [7, 8, 9]. Many 
qualitative and quantitative benefits of smart work zones are reported from field deployments, such 
as a reduction in aggressive maneuvers and crashes [3, 10, 11], smoothed merging activities [7, 12], 
reduced speeding [7, 13], increased throughput [7], and reduced delay [14, 15].  

Given the increasing number of smart work zone deployments, cross-studies have been performed to 
summarize the lessons learned and the benefits of each smart work zone [10, 11, 16, 17]. Recently, 
the Federal Highway Administration (FHWA) published work zone implementation guidelines [1] to 
determine the feasibility and design of a work zone intelligent transportation system (ITS) for a given 
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application. The guidelines also report that trade-offs typically exist between the number and type of 
work zone components, but the guidelines lack a quantitative assessment of the trade-offs. A main 
reason for the knowledge gap is the difficulty of collecting detailed performance data from a large 
number of configurations in an active work zone. 

Regardless of the application, the effectiveness of smart work zones relies on accurate and reliable 
estimates of traffic conditions (e.g., traffic velocity, the back of queue, and the travel time). For 
example, the estimated traffic conditions that are used to produce safety-critical messages on 
portable changeable message signs (PCMS) must be accurate and credible to be effective [18]. 
Therefore, the estimation accuracy of the traffic condition can be used as a metric for the potential 
effectiveness of smart work zones, which circumvents the time-consuming collection of performance 
data for mobility and safety. 

The main objective of this study is to identify the key factors for improving the estimation accuracy, 
by evaluating a large number of smart work zone configurations in a microsimulation environment. 
Specifically, the objectives are as follows: 

 To develop and calibrate a microsimulation environment for the simulation of a large number 
of smart work zone configurations, which vary in the number and spacing of sensors, types of 
sensors, and accuracy of individual sensors. 

 To review and implement a variety of algorithms for estimating the traffic velocity, queue 
length, and travel time, including a spatial interpolation algorithm, a spatio-temporal filter 
that incorporates the temporal dynamics of traffic, and a state-of-the-art nonlinear Kalman 
filter. 

 To quantitatively assess the influence of the number and spacing of sensors, the type of 
sensors, the accuracy of sensors, and the traffic estimation algorithms on traffic estimation 
accuracy to help determine the potential effectiveness of smart work zones. 

1.2 METHODOLOGY  

This study uses a microsimulation environment to simulate a large number of smart work zone 
configurations and traffic estimation algorithms. The developed framework is illustrated in Figure 1.2. 
The framework consists of the following key components: 

 A microscopic traffic simulation software, AIMSUN, is used to model the work zones, simulate 
the traffic at the level of individual vehicle movements, and generate detailed trajectory data 
at a 0.2 second granularity for each vehicle. The microsimulation model is calibrated using 
field data to reproduce similar traffic statistic as observed in the field. 

 To investigate the influence of types of sensors and the accuracy of individual sensors, 
dedicated sensor error models are developed that can generate realistic sensor 
measurements from the trajectory data. Three types of commonly used sensors are modeled 
in this study, namely, remote traffic microwave sensor (RTMS), Doppler radar (radar), and 
low-energy radar (LER, an example of which is iCone®). 
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 Three algorithms are implemented to estimate the traffic condition. The algorithms are 
representative of the (1) spatial interpolation approaches often used in practice by state 
departments of transportation (DOTs), (2) spatial-temporal filtering algorithms that can 
incorporate the temporal dynamics of traffic, and (3) nonlinear Kalman filtering methods 
conventionally applied on highways outside of work zone environments [19, 20] by the 
research community. The algorithms directly estimate the traffic velocity, from which the 
length of the queue and the travel time could be computed. 

 Finally, true states are obtained from the trajectory data for computing the estimation error 
of the velocity, queue length, and travel time. 

In total, more than 700 smart work zone deployments were simulated for assessing the importance 
of the number and spacing of sensors, the types of sensors, the accuracy of individual sensors, and 
the estimation algorithms. 

 
 

Figure 1.2: Framework for the evaluation of  
various sensor network configurations and algorithms. 

1.3 ORGANIZATION OF THE REPORT  

The remainder of this report is organized as follows.  

Chapter 2 summarizes representative smart work zone deployments, existing work zone summary 
reports, and guidelines for smart work zones. The literature review identifies a lack of a 
comprehensive, quantitative, and comparative analysis on the design of smart work zones, which 
motivates this study. 
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Chapter 3 documents the development of a virtual testbed in the microsimulation environment. Two 
work zones in Illinois, on I-80 and I-57, were modeled and calibrated in the microsimulation 
environment. Prior to the calibration of work zones, an analysis of the field data was conducted. The 
data quality analysis revealed data incompleteness and inconsistency issues, which presented 
challenges for the calibration of the two work zones. The developed sensor models for RTMS, radar, 
and LER are described in the last subsection. 

Chapter 4 reviews the traffic estimation algorithms and describes the implementation of 
representative algorithms in three categories with different levels of sophistication. The algorithms 
are based on spatial interpolation, spatio-temporal filtering, and a nonlinear Kalman filter. 

Chapter 5 presents the evaluation results and summarizes the impact of each factor on estimation 
accuracy of traffic conditions. Based on the analysis results, a cost-effectiveness analysis was 
conducted. 

Chapter 6 summarizes the main findings of this study on the design of smart work zones. 
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CHAPTER 2: LITERATURE REVIEW OF SMART WORK ZONES  

A large number of studies have been conducted to summarize the benefits, lessons learned, and 
guidelines for implementing smart work zones. The objective of the literature review in this study is to 
summarize a list of available resources that can be used as references in the strategic design of smart 
work zones. The literature review places more emphasis on the detailed configuration of the deployed 
sensor network, as opposed to system-level implementation strategies. Section 2.1 focuses on 
representative smart work zone deployments and summarizes the lessons learned in case studies. Section 
2.2 reviews existing works on the cross-cutting assessment and summarizes existing meta-studies for 
smart work zones. 

2.1 REPRESENTATIVE SMART WORK ZONE DEPLOYMENTS  

Smart work zone technologies can be applied to achieve a variety of goals. According to the work 
zone implementation guide [21] by FHWA, smart work zones can be classified as follows: 

 Real-time traveler information systems that provide congestion, delay, and alternative route 
information to motorists. 

 Queue warning systems, which provide warnings to motorists about stopped or slow traffic to 
reduce the risk of rear-end collisions. 

 Dynamic lane merge systems, which dynamically instruct the motorists’ merge actions to 
smooth merge maneuvers based on the traffic condition. 

 Incident management systems, which detect the occurrences of incidents for quick response. 

 Variable speed limit systems, which dynamically adjust the speed limit to smooth traffic 
through work zones. They aim to improve mobility and/or safety. 

 Automated enforcement systems, which detect speeding vehicles and enforce the speed 
compliance of motorists. 

 Performance measurement systems, which evaluate the impact of the work zone based on 
quantitative measures, such as the induced travel delay and the length of developed queues. 

This section summarizes a representative subset of smart work zone deployments in each of the 
above categories.  

2.1.1 Real-Time Traveler Information System  

A real-time traveler information system provides traffic information to motorists, which may include 
the travel time or delay, the queue length, or reroute information. Two representative real-time 
traveler information systems are summarized next. A comprehensive review of real-time traveler 
information systems can be found in [22]. 
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Automated Portable Real-Time Traffic Control Systems, Illinois, 2001–2002 [4] 

 Objective: The primary goal of the deployed system was to estimate and disseminate the 
travel delay time to motorists via portable dynamic message signs (PDMS) and the Illinois 
Department of Transportation (IDOT) website. The secondary goal of the system was to 
provide congestion and incident detection alerts to IDOT staff. 

 System configuration: The system was deployed on both the northbound and southbound 
approaches to the work zone, covering approximately 40 miles of I-55. Eight portable X-Band radar 
units were used to measure the vehicle speed and presence data. Four portable closed circuit 
television (CCTV) cameras were deployed to identify possible incidents detected by the radar 
sensors. Seventeen remotely controlled PDMS were used to disseminate delay and lane closure 
advisories. 

 Reported benefits: Overall, no significant traffic backups occurred while the system was in 
place. IDOT officials “were satisfied with the performance.” However, owing to the lack of 
“before” and “after” data, no quantitative benefit of the system was reported. 

Automated Work Zone Information System, Arkansas, 2000 [3] 

 Objective: The main objective of the system was to provide traffic information regarding the 
length of the queue to assist travelers in making routing decisions. The delay time was not 
provided to travelers because of the potential for inaccurate estimates. However, the system 
could provide faster incident response. 

 System configuration: Twelve RTMS were deployed over 7 miles to measure the traffic speed, 
volume, and occupancy. The traffic information was disseminated by five PDMS covering 9 
miles, three highway advisory radios (HARs) covering 23 miles, and the project website. 

 Reported benefits: The system was reported to have improved construction project 
productivity by adjusting construction activity schedules to avoid the identified peak traffic 
periods. Improved incident response was also noted. It was observed that 90% of the PDMS 
messages matched the actual conditions. The field engineer stated, “The system worked well 
and appeared to be effective in preventing and reducing rear-end collisions and enhancing 
congestion management” [3]. 

2.1.2 Queue Warning and Detection System  

Queue warning and detection systems estimate the location of the back of the queue and disseminate 
warning messages to approaching motorists. A comprehensive review on the practices of queue warning 
systems is available in [5], which found that the most notable benefit of the deployment of queue warning 
systems is the reduction of rear-end crashes. This section summarizes two representative deployments of 
queue warning systems. More deployments of queue warning systems can be found in [23, 24, 25]. 

I-57/I-64 Queue Warning System, Illinois, 2011–2013 [6] 

 Objective: The main goal of the system was to detect and warn approaching traffic about 
slow-moving or stopped traffic. 
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 System configuration: Thirty-two LER-based iCone® devices were deployed at approximately 1 
mile spacings to measure the speed of traffic. Fifteen PCMS were used to disseminate the 
queue information. 

 Reported benefits: No quantitative benefits were reported owing to the lack of data before 
deployment of the system. It was reported, however, that “project staff ... believed the 
system was helpful in reducing queues and managing traffic” [6]. 

I-35 End-of-Queue Warning System, Texas, 2013 [26, 27] 

 Objective: The main goal of this system, which is currently in operation, is to detect and 
predict the formation of queues and warn motorists of slow and stopped traffic ahead [28]. 

 System configuration: The project is expected to be completed in 2018. Currently, the system 
consists of 17 RTMS for measuring the traffic speed, volume, and vehicle classification; 40 
pairs of Bluetooth sensors for detecting the travel time; six CCTV cameras for traffic 
surveillance; and 10 PCMS for disseminating traffic information [29]. 

 Reported benefits: No quantitative benefit is currently reported. 

2.1.3 Dynamic Lane Merge System  

Dynamic lane merge systems aim to smooth the flow of traffic through the work zone by regulating 
merge movements based on traffic conditions. The effectiveness of dynamic lane merge system was 
evaluated in [8]. It was reported that the average delay per vehicle to pass through the work zone 
and the number of aggressive driving maneuvers decreased with the deployment of a dynamic lane 
merge system. Two representative dynamic lane merge systems are summarized below. 

Dynamic Lane Merge System, Michigan, 2002–2003 [7] 

 Objective: The goals of the system included reducing aggressive driving at the merge point, 
maximizing available capacity, and enhancing traveler safety. 

 System configuration: Five dynamic lane merge trailers were deployed upstream of the work 
zone at a spacing of 1,500 feet. Each trailer consisted of an RTMS for measuring the traffic 
speed, volume, and occupancy, and a dynamic sign for posting merge instructions to travelers. 

 Reported benefits: Quantitative benefits were presented in a Michigan DOT report [30]. The 
average number of stops in the work zone decreased from 1.75 to 0.96, and the travel time 
delay decreased from 95 seconds to 69 seconds during the morning peak period. The average 
travel speed increased from 40 mph to 46 mph during the morning peak period. In addition, 
the average number of aggressive driving maneuvers decreased from 2.88 to 0.55 during the 
afternoon peak period, which consequently improved the safety. 

Simplified Dynamic Lane Merge System (SDLMS), Florida, 2008 [8] 

 Objective: The primary goal was to regulate the merge movements depending on the traffic 
conditions to increase capacity and safety using a simplified lane merge system for short-term 



8 

movable work zones. A secondary goal was to quantitatively assess the effectiveness of 
simplified dynamic lane merge system using field data. 

 System configuration: RTMS were used to collect the volume, speed, occupancy, and vehicle 
classification data at the merging points, while PCMS were used to display proper merging 
instructions. 

 Reported benefits: A significant increase of the work zone capacity from 881 vehicles/hour to 
970 vehicles/hour using the early-merge system SDLMS was observed. Using the late-merge 
strategy, the capacity increased from 881 vehicles/hour to 896 vehicles/hour, which was not 
statistically significant. In general, the early-merge SDLMS performs better at low traffic 
volume and worse at high traffic volume than the late-merge SDLMS. 

2.1.4 Incident Management System  

Incident management systems automatically detect the occurrence and location of the incidents for 
quick traffic control response to mitigate the safety and congestion issues caused by the incidents. 
Typically, traffic sensors are deployed to automatically detect abnormal traffic conditions and CCTV 
videos are used to visually inspect and assess the incidents. Once incidents are confirmed, PCMS are 
used to warn and reroute travelers to mitigate potential safety issues and prevent severe backups. 

Incident management can be the primary goal of a smart work zone deployment, or it can be 
integrated into smart work zones with other primary goals such as in [2, 4]. A typical incident 
management is described as follows. 

Incident Management System, New Mexico, 2000 [31] 

 Objective: The primary goal of the system was to quickly identify incidents for an effective 
response to clear the roadway and enhance traveler safety. 

 System configuration: Eight CCTV were installed at key locations and the videos were 
inspected manually in real-time to detect incidents. Eight DMS, four HAR, and the project 
website were used to disseminate the incident and rerouting information to travelers. 

 Reported benefits: The response time to incidents reduced from 45 minutes to 25 minutes 
with the deployment of the incident management system. More than 60% of respondents in a 
survey reported the disseminated traffic information was accurate and timely [2]. 

2.1.5 Variable Speed Limit System  

The variable speed limit systems aim to increase the throughput and enhance safety by providing 
travelers a speed limit derived based on the current traffic conditions. The effectiveness of variable 
speed limit systems was evaluated in [32, 33, 34, 35], which report increased throughput, reduced 
travel time, and an increase in speed limit compliance. A typical variable speed limit system deployed 
in Utah [39] is summarized below, and more examples of variable speed limit systems can be found in 
[36, 37, 38]. 
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Variable Advisory Speed System, Utah, 2010 [39] 

 Objective: The goal of the system was to provide drivers with an advised traffic speed based 
on the measured traffic conditions in the work zone. 

 System configuration: Five RTMS were deployed to measure the traffic speed, volume, and 
occupancy at spacings ranging from 0.17 to 0.4 mile. Two variable message signs were used to 
display the advisory speed. 

 Reported benefits: Statistical analysis showed the system was in general effective at 
increasing mean speed and decreasing speed variance, thus providing smooth traffic flow 
when there was a slowdown during the weekend evening peak period. 

2.1.6 Automated Speed Enforcement System  

Automated speed enforcement systems are commonly used to improve the speed compliance of 
motorists. These systems can be deployed as a stand-alone device equipped with a speed sensor, a 
PCMS, and an optional camera. The effectiveness of the system varies based on the operational 
strategies used [40]. In general, the system is reported to decrease the average speed of traffic, 
resulting in fewer speed limit violations and improved safety. A typical stand-alone speed 
enforcement system is summarized below, while more deployments and evaluations of speed 
enforcement systems can be found in [41, 42, 43, 44]. 

Photo Radar Speed Enforcement System, Oregon, 2008–2009 [45] 

 Objective: The system was deployed as a demonstration project to evaluate the effectiveness 
of the photo speed enforcement system. 

 System configuration: An RTMS was used to measure the traffic speed and volume. A camera 
was used to take photos of the license plates as the primary enforcement strategy. 

 Reported benefits: On average, the speed was reduced by 23.7% while the photo radar speed 
enforcement system was active. 

2.1.7 Performance Measurement System  

Performance measurement systems use traffic data to quantitatively measure the impact of the work 
zone project on safety and mobility, such as induced travel delay and the queue length [46, 47]. Such 
quantitative assessments can be used as incentives or disincentives for the work zone project 
contractors. 

A synthesis of work zone performance measures was reported in [48]. A performance measurement 
system using license plate recognition technology is summarized below. The operational impact of 
the I-35 reconstruction project in Texas in 2012 (ongoing) was quantified in the travel delay using 
Bluetooth sensors [26]. The experience of using probe vehicle data (e.g., vehicles equipped with GPS, 
Bluetooth, or Electronic Toll Collection devices) for evaluating work zone performance is described in 
[49, 50]. A more comprehensive review of mobility-based performance measures using seven 
different technologies can be found in [51]. 
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Work Zone Travel Time System, Arizona, 2002 [9] 

 Objective: The main goal of the system was to measure travel time through the work zone, 
which was used to provide incentives to the contractors if the traffic delay was less than a 
specified threshold. 

 System configuration: Two inductive loop detectors at both ends of the work zones were used 
to detect the presence of vehicles, which triggered digital cameras to take photos of the 
license plates. A license plate recognition algorithm was used to identify vehicles for 
measuring the travel time. 

 Reported benefits: The system was able to read 60% of the license plates and match 
approximately 11% of the license plates. The travel time measure helped the contractor adjust 
work operations to reduce congestion. 

2.2 ASSESSMENTS AND GUIDELINES OF SMART WORK ZONES  

This section reviews the existing works summarizing the collective experiences from work zone case 
studies, including evaluations of smart work zone systems, assessments of the benefits of smart work 
zone deployments, and guidelines for implementing smart work zone technologies. 

A continuing effort has been devoted to the development of a knowledge database 
(http://www.itskr.its.dot.gov) for documenting the ITS benefits, costs, and lessons learned [11, 52, 
53]. More than 1,600 summaries of ITS deployments across 16 taxonomy areas have been archived 
through 2014, including more than 130 summaries for ITS deployments in work zones. Twenty fact 
sheets were developed to summarize the benefits, costs, and lessons learned in ITS deployments, 
including one fact sheet focusing specifically on smart work zones. The primary lessons learned across 
smart work zone deployments were generally operations oriented (e.g., planning for sufficient testing 
time during the deployment of the smart work zone), allowing an adjustment period for travelers for 
higher effectiveness of the smart work zone. 

A detailed literature review [5] of 94 smart work zone deployments including queue warning systems, 
dynamic merge systems, alternate routes, and variable speed limits was conducted to summarize the 
benefits and typical uses of smart work zone technologies. It concludes that when more sensors are 
deployed, the systems provide faster notification of changes of the traffic conditions and increase the 
estimation accuracy of the traffic conditions. 

A cross-cutting study report [2] summarizes lessons learned from four smart work zone deployments 
and identifies key lessons learned for the success of a smart work zone system. For example, it is 
concluded that is vital to deliver accurate information to the public. However, no analysis of the 
detailed design of sensor networks of smart work zones is included. 

The best practices and lessons learned for the ITS strategic planning are documented in [16]. The 
emphasis is placed on the decision-making processes, including agency interactions, processes and 
procedures, organizational structures, and institutional involvement. 

The current practices for queue warning used by international agencies and state DOTs are identified 
in [54] based on a literature review of more than 40 practices and techniques. One of the reported 

http://www.itskr.its.dot.gov/
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difficulties of queue warning systems is the selection of locations for deployment of sensors, which 
may rely on the field engineers’ expertise and knowledge to estimate where the end of the queue is 
likely to be located. 

A quantitative assessment of the mobility and safety benefits of smart work zones is conducted using 
a “before” and “after” analysis in [17]. The requirements of the “before” and “after” performance 
data constrained the scope of the study to consider only five work zone deployments. 

In addition to summaries of smart work zone deployments, assessments of commercial smart work 
zone systems for specific applications have been conducted. Four different smart work zone 
configurations were evaluated for the accuracy of queue detection [25]. The LER solution iCone®, 
designed for work zones, was evaluated in [55]. A comprehensive study [22] compared 16 different 
commercially available advanced traveler information systems (ATIS) in 27 separate deployments 
throughout the United States. An 11-step procedure was developed to assist DOTs in choosing the 
most appropriate ATIS configuration for any given work zone. However, more emphasis was placed 
on the selection of generic systems, and little information was provided on the detailed design of the 
system (e.g., the number and type of sensors). Overall, it was concluded that more-advanced real-
time systems (consisting of multiple detectors and PCMS) have the greatest potential benefits in 
general, but they offered few advantages over stand-alone systems (consisting of one detector and 
one PCMS) when traffic is light and free flowing. 

Because of the distinct specifications and goals in each work zone, existing studies commonly 
summarize the collective experiences of smart work zone deployments into guidelines for future 
implementation via a systems engineering approach. Two representative implementation guidelines 
are summarized next.  

An intelligent work zone toolbox [56] was developed by Minnesota DOT, which contains guidelines 
for selecting an appropriate smart work zone system for different applications. The toolbox was 
intended as “brainstorming material” and therefore did not include detailed designs of the smart 
work zone systems. 

Recently, a smart work zone implementation guide [1] was developed by FHWA, which summarizes 
key steps for successfully implementing smart work zones via a systems engineering process. The 
guidelines report that trade-offs typically exist between the desired system features and 
components, which, however, lacks quantitative assessment to understand the implications of 
different designs and work zone sensor configurations. 

2.3 SUMMARY OF LITERATURE REVIEW  

In general, the benefits of smart work zones have been widely reported. However, to quantify the 
effectiveness of smart work zones, measurement data before and after the deployment of the system 
is required, which is often unavailable in most case studies. In addition, based on the review of 
reports, the data collection process for quantifying the impact of smart work zones on mobility and 
safety was confirmed to be time consuming and often impractical. 
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Based on the large number of smart work zone deployments, efforts have been devoted to 
summarize the collective experiences from a variety of perspectives, ranging from the evaluation of 
off-the-shelf commercial systems for a specific application and assessment of operational strategies, 
to the development of a generic implementation guidelines via systems engineering approaches. 
However, very limited attention is given to subsystem-level analysis on the configuration of traffic 
monitoring component of smart work zones (e.g., the number and type of sensors used). The primary 
reason is that traffic monitoring system configurations vary significantly across smart work zone 
deployments and are typically developed for each specific deployment in collaboration with 
professional vendors. Moreover, collection of true traffic conditions (informally referred to as ground 
truth) is extremely difficult in the field. The deployment expense of the systems makes comparisons 
of various system configurations costly.  

The goal of this study is to fill a knowledge gap in the configuration of work zone systems via the 
evaluation of a large number of traffic monitoring configurations, which vary in the number and 
spacing of sensors, the type of sensors, the accuracy of individual sensors, and traffic estimation 
algorithms. For a quantitative comparison, the accuracy of the estimate of the traffic condition is 
used as the performance measure because of its importance in effectively enabling a variety of smart 
work zone systems such as back-of-queue warning, travel time estimation, and traffic advisory 
information. 
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CHAPTER 3: CONSTRUCTION OF A VIRTUAL TESTBED IN 
MICROSIMULATION  

This study proposes to use a microsimulation environment to assess a variety of smart work zone 
configurations and traffic estimation algorithms. This chapter describes the development of the 
microsimulation environment, including modeling and calibration of two work zones selected in 
Illinois, the quality analysis of field data, and the development of sensor error models. 

This chapter is organized as follows. Section 3.1 describes the selection of two work zones in Illinois 
for modeling in the microsimulation environment. Section 3.2 evaluates the field sensor data 
available for selecting the simulation period and the work zone model calibration. Section 3.3 
introduces a microsimulation software (AIMSUN) and the modeling procedure of the selected work 
zones. Section 3.4 documents the calibration procedure performed for the modeled work zones and 
the calibration results. Finally, the development of dedicated sensor models is presented in Section 
3.5, which completes the setup of the microsimulation environment. 

3.1 SELECTION OF WORK ZONE SITES  

A microsimulation environment can simulate traffic flows at the microscopic level. To enhance the 
validity of the findings in this study, a microsimulation that resembles realistic traffic conditions is 
highly desirable. Specifically, the traffic in the microsimulation should replicate traffic conditions in 
the selected work zones. Two work zones were selected in collaboration with IDOT: one with 
moderate average daily traffic (ADT) and one with high ADT. 

The selection criteria are summarized in Table 3.1. For modeling a work zone in the microsimulation 
software AIMSUN, detailed work zone geometry from the construction plan is required. Meanwhile, 
field sensor data is required for calibration of microsimulation models. In consultation with IDOT, 
several candidate work zones were reviewed, and the following two work zones with existing field 
deployed smart work zone systems were selected: 

 I-80 bridge repair project (IDOT Contract No. 60Y64) over the Des Plaines River in Will County, 
Illinois, with an ADT of 82,000 with 27% trucks. This project started in January 2015 and was 
ongoing at the time of the analysis. A smart work zone system was deployed, consisting of 18 
radar sensors and 12 RTMS. For the purpose of this research, Stage I of the work zone was 
modeled, shown in Figure 3.1. In the remainder of this report, this work zone is referred to as 
the I-80 work zone. 

 I-57/I-64 freeway interchange pavement resurfacing project (IDOT Contract No. 78276) near 
Mt. Vernon in Jefferson County, Illinois, with an ADT of 33,620 with 32% trucks (2014). This 
project started in April 2014 and is ongoing at the time of this report. A smart work zone 
system was deployed, consisting of 22 radar sensors and three RTMS. For the purpose of this 
research, Stage IV of the work zone was modeled, shown in Figure 3.2. In the remainder of 
this report, this work zone is referred to as the I-57 work zone. 
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Table 3.1: Criteria Used for Selection of Work Zones to Be Modeled in Microsimulation Software 

 Purpose  Doc/Data  Comments 

Modeling 

Required 

Basic geometry 

 Length of the closed lane (taper, transition area, buffer space, 
construction zone). 

 Width of lanes. 

 Number of lanes. 

Typical daily 
construction activity 

Construction hours on weekdays and weekends. Lane closure 
information if not closed all day. 

Speed limit 
Changes of speed limits throughout the work zone and the location of 
the speed limit signs. 

Typical hourly traffic 
volume 

The traffic volume in the work zone with a granularity of 1 hour or 
higher. 

Percentage of trucks A rough estimation of the percentage of trucks. 

Desired 
Curvature, grade, 
geometry of 
merges/diverges 

The curvature and grade may help improve the soundness of the 
model; the geometry of the merge and diverge points may not be 
modeled depending on its complexity. 

Calibration 

Required 
Entering/exiting 
traffic volume data 

 On a typical construction day. 

 With a granularity of 1 hour or higher. 

Desired 

Traffic speed data 
 On a typical construction day. 

 With a granularity of 1 hour or higher. 

Travel time data 
 On a typical construction day. 

 With a granularity of 1 hour or higher. 

Queue length data 
On a typical construction day (see Chapter 4 for more discussion on 
how queue length is quantified). 

Sign placements 
The location and types of traffic signs placed before and through the 
work zone, including speed limit signs, work zone warning signs, and 
lane merging signs. 
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Figure 3.1: Stage I of the I-80 work zone. 

 

Figure 3.2: Stage IV of the I-57 work zone. 
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3.2 ANALYSIS OF FIELD DATA  

The most safety-critical period in work zones is when severe congestion occurs. In addition, the 
period of severe traffic congestion provides varying traffic conditions, such as queue formation and 
dissipation, and is suitable for testing the performance of various sensor network configurations and 
traffic estimation algorithms. This study proposes to reproduce the traffic conditions in severe 
congestion periods in each of the work zones. For this purpose, the field data was investigated to 
select the most congested period for modeling in each work zone. During the process of analyzing the 
field data, degradation of the data quality was observed during congested periods. This subsection 
documents the main findings during the analysis of the field data and also incorporates additional 
information based on a discussion with the vendor of the smart work zone systems, Ver-Mac, held on 
June 8, 2016. The methodology adopted in the data quality analysis is described in Appendix B.1. The 
draft report submitted to IDOT on December 26, 2015, and forwarded to Ver-Mac is found in 
Appendix B.2. 

This section reports on two data quality measures: (1) missing data rates, and (2) sensor 
measurement inconsistencies. The dataset used in this section was obtained through the software 
JamLogic, provided by Ver-Mac. The dataset includes the velocity and count data aggregated in user-
defined intervals. In this project, 5 minute intervals were considered to provide a good balance 
between data granularity and quantization error. 

This section is organized as follows. Section 3.2.1 describes the scope of the field data analyzed in this 
study. The main findings are summarized in Section 3.2.2. Finally, Section 3.2.3 remarks on the 
limitation of the data quality analysis and selects the congested periods to be modeled based on the 
data analysis findings. 

3.2.1 Data Description 

The data quality analysis was limited to the time and sensors that were considered for simulation. 
Specifically, the analysis was limited to the following periods and sensors: 

 Eastbound direction of the I-80 work zone between May 1, 2015, and May 31, 2015. This 
month was selected because the project started in April, 2015 and the modeling of this work 
zone in the microsimulation environment was conducted in June, 2015. The missing data 
percentage and the sensor measurement inconsistencies were computed under different 
scenarios to better understand the potential issues: 

o The entire month of May 2015. 

o An estimated peak hour between 1630 and 1730 hours for the entire month in May 2015, 
based on visual inspection of the speed data patterns. 

o Three time intervals with apparent congestion (May 1 from 1530 to 1800 hours, May 3 
from 1100 to 1630 hours, and May 7 from 0700 to 1630 hours), based on visual inspection 
of the speed data patterns. 

o A typical free-flow time interval (May 1, 2015, from 1300 to 1530 hours). 



17 

 Southbound direction of the I-57 work zone between November 1, 2014, and November 30, 
2014. This dataset was of interest for modeling because of the occurrence of severe 
congestion. For the data quality assessment, the missing data percentage and the sensor 
measurement inconsistencies were computed in the following scenarios: 

o The entire month of November 2014. 

o An estimated peak hour between 1630 and 1730 hours for the entire month of November 
2014, based on visual inspection of the speed data patterns from the RTMS. 

o Three time intervals with apparent congestion (i.e., November 26 from 1600 to 1800 
hours, November 26 from 2100 to 2300 hours, and November 16 from 1700 to 1830 
hours), based on visual inspection of the speed data patterns. 

o A typical free-flow time interval (November 18, 2014, from 0600 to 1100 hours). 

3.2.2 Data Analysis Findings  

This section presents the numerical results of the data quality assessment performed on the datasets 
in each of the work zones. 

I-80 Work Zone Data Analysis 

The missing data rates for the I-80 data during the analyzed periods for sensors installed in the 
eastbound direction are summarized in Table 3.2. 

The following observations can be made: 

 EB9* had a large number of missing speed records and count records, and was identified as 
problematic.  

 EB11 also had a large number of missing speed records and no count records. Ver-Mac 
clarified that EB11 was a standard radar unit installed on a distinct hardware platform (a 
portable changeable message sign) that was not designed to capture count data. Other radar 
units were installed on the stand-alone JamLogic platform and consequently recorded speed 
and count data. 

 During the congested intervals, EB10, EB14, EB15, and EB16 each had missing data rates 
above 10%, but they had lower missing data rates averaged over the month. 

 The RTMS EB12* had a higher missing data rate over the entire month compared to other 
intervals considered. Ver-Mac provided additional analysis that indicated the causes of the 
missing data included a sensor malfunction from May 5 0400 to May 6 1322. The additional 
analysis also identified that from 0550 to 0725 on May 28, the sensor did not report any data, 
and an adjacent sensor also did not report data during the interval. This localized failure is 
consistent with a problem occurring at the nearest cellular tower (e.g., tower maintenance).   

 Sensors EB16 through EB8 experienced significant issues during the congestion intervals. 
Sensors EB7 through EB3 had less significant missing data issues, presumably because the 
queue did not extend to their location. 
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 Overall, the missing data rate in the entire period was 3% over all sensors deployed, and less 
than 1% when excluding EB9* and EB11. The missing data rate in congested intervals was 
several times higher, especially for radar sensors. Ver-Mac provided additional analysis that 
indicated the missing data is more prominent between 0500 to 0700 and 1200 to 1500. Ver-
Mac indicated one cause could be due to prioritization of voice communications over data 
communications by the cellular provider during high communication traffic on the cellular 
network.  In heavily congested road traffic conditions, the missing data rate is also influenced 
by the fact that the radar units have reduced performance at speeds less than 20 mph, and do 
not record data at speeds less than 10 mph. When the communication network and the road 
network are both congested, both may influence the missing data rate. 

 The quantitative data inconsistency results between sample pairs of sensors on I-80 for all of 
May 2015 and a typical free-flow interval are shown in Table 3.3 and Table 3.4, respectively. 
The notation 𝑖 →  𝑖 +  1 refers to the data percent change from sensor 𝑖 to 𝑖 +  1. 

The following findings were obtained based on the statistical analysis: 

 As seen in Table 3.3 and Table 3.4, the RTMS provided higher values for speed and count 
measurements than the radar sensors. 

 The measurement inconsistencies occurred across two types of sensors, as well as among 
radar sensors. The largest inconsistency for speed (10% to 17%) and counts (73% to 93%) was 
observed between RTMS and radar sensors. 

Table 3.2: May 2015 I-80 Eastbound Percent Missing Data Rate 

 Entire Period  Peak Hours  Congested Intervals  Free-Flow Interval 

Sensor Speed Count  Speed Count  Speed Count  Speed Count 

EB3 0.41% 0.41%  0.00% 0.00%  1.99% 1.99%  0.00% 0.00% 

EB4 0.44% 0.44%  0.00% 0.00%  3.28% 3.28%  0.00% 0.00% 

EB5* 0.27% 0.27%  0.00% 0.00%  2.99% 2.99%  0.00% 0.00% 

EB6 0.53% 0.53%  0.00% 0.00%  2.99% 2.99%  0.00% 0.00% 

EB7* 0.24% 0.24%  0.00% 0.00%  2.99% 2.99%  0.00% 0.00% 

EB8 0.46% 0.46%  0.00% 0.00%  6.47% 6.47%  0.00% 0.00% 

EB9* 27.40% 27.40%  25.81% 25.81%  34.83% 34.83%  0.00% 0.00% 

EB10 0.52% 0.52%  0.00% 0.00%  10.45% 10.45%  0.00% 0.00% 

EB11 0.84% N/A  0.00% N/A  0.00% N/A  0.00% N/A 

EB12* 4.84% 4.84%  3.23% 3.23%  2.99% 2.99%  0.00% 0.00% 

EB14 0.85% 0.85%  0.00% 0.00%  15.92% 15.92%  0.00% 0.00% 

EB15 0.74% 0.74%  0.00% 0.00%  16.92% 16.92%  0.00% 0.00% 

EB16 0.75% 0.75%  0.00% 0.00%  19.90% 19.90%  0.00% 0.00% 

Average 2.95% 3.12%  2.23% 2.42%  9.36% 10.14%  0.00% 0.00% 

Average excluding EB9*, EB11 0.91% 0.91%  0.29% 0.29%  7.90% 7.90%  0.00% 0.00% 

Note: the symbol * denotes an RTMS.  
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Table 3.3: May 2015  
Data Percent Change on I-80  

Table 3.4: May 1, 2015  
(1300–1530 hours) 

Data Percent Change on I-80 

Sensor Pair 

Percent Change  

Sensor Pair 

Percent Change 

Speed Count  Speed Count 

EB4→EB5* 17.08% 73.79%  EB4→EB5* 16.31% 79.85% 
EB4→EB6 3.12% 22.58%  EB4→EB6 1.73% 10.35% 
EB8→EB9* 14.23% 84.49%  EB8→EB9* 10.81% 93.73% 
EB8→EB10 8.29% 26.35%  EB8→EB10 6.93% 13.68% 

 Note: The symbol * denotes an RTMS. 

I-57 Work Zone Data Analysis 

The missing data rates for sensors installed in the I-57 southbound lane during November 2014 are 
presented in Table 3.5. 

The following observations were made: 

 The dataset was largely complete when the traffic was in free flow. 

 The radar sensors had around a tenfold increase in the missing speed data rate during congested 
periods compared with the monthly average. One primary cause was the slow traffic speed where 
radar sensors failed to detect the traffic. An illustrative figure plotting the missing data from radar 
sensors in severe congestion can be found in Appendix B.2 Figure 1. 

 The rate of missing data during congestion was significantly higher than the rate of missing count 
data during the same time interval. This may be explained by the operational principle of sensors 
(i.e., if no speed data is recorded, the vehicle counts are set to zero).  

 The RTMS did not have any missing speed or count records during the congested intervals, but 
it had higher than average missing data rates over the entire month compared with the radar 
sensors. As reported in JamLogic, SB7* had low battery and communication timeout issues 
between November 1 and November 4, which resulted in missing 34.98% of the speed data 
and 34.38% of the count data. 

Table 3.5: November 2014 I-57 Southbound Percent Missing Data 

 Entire Period  Peak Hours  Congested Intervals  Free-Flow Interval 

Sensor Speed Count  Speed Count  Speed Count  Speed Count 

SB1 1.33% 1.20%  1.54% 0.77%  10.67% 0.00%  1.64% 1.64% 

SB2 1.15% 0.75%  3.59% 0.26%  44.00% 0.00%  0.00% 0.00% 

SB3 0.83% 0.44%  3.59% 0.26%  33.00% 0.00%  0.00% 0.00% 

SB4 0.54% 0.38%  1.79% 0.26%  16.00% 0.00%  0.00% 0.00% 

SB5 7.14% 6.91%  10.51% 8.72%  21.33% 0.00%  0.00% 0.00% 

SB6 3.68% 3.02%  7.18% 3.85%  58.67% 0.00%  0.00% 0.00% 

SB7* 5.19% 5.00%  7.18% 7.18%  0.00% 0.00%  0.00% 0.00% 

SB8 1.52% 1.01%  4.36% 1.03%  49.33% 0.00%  0.00% 0.00% 

SB9 0.31% 0.08%  2.82% 0.00%  25.33% 0.00%  0.00% 0.00% 

Average 2.41% 2.09%  4.73% 2.48%  28.74% 0.00%  0.18% 0.18% 

Note: The symbol * denotes an RTMS. 
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The inconsistency assessment statistics between samples of neighboring sensors are presented in Table 
3.6 and Table 3.7. The following findings were summarized from Table 3.6 and Table 3.7: 

 The count inconsistencies between sensor pairs were large regardless of the sensor types. The 
inconsistency can be caused by measurement error from sensors, occlusion (i.e., the vehicle on 
the closer lane blocking the vehicle on the further lane from the view of the sensor) in heavy 
traffic, and the location of sensors (e.g., downstream sensors close to the work zone bottleneck 
may experience slower traffic with daily queues).  

 The inconsistency of speed readings between radar and RTMS pairs was relatively larger 
compared to that of radar–radar sensor pairs.  

Note: The symbol * denotes an RTMS. 

3.2.3 Summary of Data Analysis  

Based on the analysis of data in limited time periods and a subset of sensors in two work zones, the 
following findings were discovered: 

 The missing data and inconsistency issues are common in field data, especially if collected in 
noisy environments (i.e., characterized by large sensor measurement error) such as work 
zones. These issues were found in the data of both work zones. An additional analysis by Ver-
Mac shared with the research team showed that the average missing data rate on I-57 
decreased from 4% in 2014 to 1.3% in 2016.  

 The I-57 work zone had severe (28%) missing data issues for radar sensors during the 
congested intervals. The I-80 work zone had a lower missing data rate (< 8%) during 
congestion, except for specific sensors that malfunctioned (EB9*). 

 Both work zones presented data inconsistency issues. Inconsistencies were largest between 
RTMS and radar sensor pairs, where speed and count errors exceeded 10% and 70%, 
respectively, in the I-80 work zone.  

A preliminary data analysis report was submitted to IDOT and forwarded to the vendor, Ver-Mac. In a 
follow-up meeting that was held between the research team and Ver-Mac, Ver-Mac provided 
valuable information on practical deployment considerations and additional data analysis. This 

Table 3.6: November 2014  
Data Percent Change on I-57 

 

Table 3.7: November 18, 2014  
(0600–1100 hours) 

 Data Percent Change on I-57 

Sensor Pair 

Percent Change  

Sensor Pair 

Percent Change 

Speed Count  Speed Count 

SB5→SB6 1.64% 23.49%  SB5→SB6 1.19% 28.39% 
SB6→SB7* 12.45% 39.64%  SB6→SB7* 10.38% 27.94% 
SB7*→SB8 10.06% 39.37%  SB7*→SB8 5.26% 24.24% 
SB8→SB9 6.06% 46.15%  SB8→SB9 6.93% 19.85% 
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helped the research team analyze the source of sensor measurement errors. For example, the RTMS 
are often calibrated using radar sensors and can have larger speed measurement errors than radar 
does if they are not properly calibrated. Owing to calibration difficulty, RTMS are typically placed in 
locations where they are not expected to move (and therefore require recalibration). These 
constraints are not considered in the present study; however, they are practical considerations when 
designing work zone systems.  

It is important to note that the missing data or inconsistent data causes challenges for the calibration 
of microsimulation models in this study, as summarized in Section 3.4. The influence of missing data 
and inconsistent data on the smart work zone application is algorithm and application dependent. For 
example, Ver-Mac system produced “slow traffic” and “prepare to stop” messages on the portable 
changeable message signs on November 26 during the period when congestion was confirmed to be 
present by field engineers. These messages occurred even in the presence of the high missing data 
rates. In addition, as demonstrated in the results of Section 4.3, low-quality count data provided by 
LER does not influence velocity estimates when simple algorithms are used. On the other hand, it can 
have a much larger influence on back-of-queue estimation when used with a more sophisticated 
estimation algorithm such as the nonlinear Kalman filter (see Section 4.3)  

It is also worth noting that the data analysis findings in this report were limited to one month of data 
collected by a subset of sensors. A comprehensive, long-term study is required for a more thorough 
understanding of the expected data quality in work zones across the state of Illinois. 

In summary, two occurrences of severe congestion in two work zones were identified from the data 
analysis and confirmed by field engineers: 

 I-80 eastbound direction between 1530 and 1800 hours on May 1, 2015. 

 I-57 southbound direction between 1530 and 1800 hours on November 26, 2014. 

3.3 MODELING OF WORK ZONES  

Two documents provided by IDOT primarily used for the work zone modeling: (1) construction plans, 
and (2) IDOT design standards. The construction plans were used to identify details of the existing 
road network such as road geometric design, topography, number of lanes, location of ramps, and 
speed limit. Further, the construction documents detail the work zone geometry based on the project 
stage, including location of tapers, closed lanes, and closed ramps. Additional details about work zone 
designs were found in the IDOT design standards, including taper lengths and work zone speed limits. 
In summary, the material rendered in both documents was studied to obtain the precise work zone 
geometry. 

The commercial simulation software selected for this project was AIMSUN, which uses a modified 
Gipps’ car-following model [57]. AIMSUN is a traffic simulation software developed by the company 
Transport Simulation Systems (TSS). The work zones were modeled in AIMSUN in a two-step process. 

The first step was to model the existing road network. AIMSUN provides basic tools for manually 
modeling the road network. Alternatively, it also supports importing the online OpenStreet Map 
(OSM) file, which provides topological data, containing road network information of user-specified 



22 

areas. The models loaded from the OSM files need to be pre-processed because they may contain an 
inconsistent number of lanes, lane widths, intersection design, road types, and speed limits. 

The second step was to model the work zone based on the documentation provided by IDOT. This 
included activating traffic management strategies such as changes in speed limits and lane closures. 
The geographical coordinates and topographic features of the OSM models were used to estimate 
the location of the work zone design elements such as tapers, start of lane closures, and end of lane 
closures.  

One difficulty of this step was that AIMSUN did not formally support tapers such as those found in 
work zone environments. One solution was to drop a lane at the work zone location and connect it to 
the upstream road segment using a connecting node that narrowed smoothly, as shown in Figure 
3.3a. However, it was found that this approach produced unrealistic merging behavior because the 
narrowed node did not provide warning of the reduction of lanes to upstream vehicles. 
Consequently, all vehicles merged to the open lane right before the work zone. The approach 
adopted in this study was to model work zones as lane closures as shown in black in Figure 3.3b, 
where the sight-distance of lane closures was set to be the same as the taper length. 

                                                   

(a) Model the work zone by reduction of lanes.         (b) Model the work zone as a lane closure. 

Figure 3.3: Two approaches for modeling work zones in microsimulation. 

The modeled eastbound freeway road section near the I-80 work zone is shown in Figure 3.4. 
According to the design standards followed in the work zone project, the speed limits in work zones 
are 45 mph, which, however, is inconsistent with the speed data recorded by the deployed smart 
work zone system on I-80. This is likely due to drivers exceeding the posted speed limit and not 
because of measurement error. To capture this behavior in the work zone model, the speed limit in 
the simulation software was at 65 mph to reflect observations from the field data. 
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The modeled southbound freeway road section near the I-57 work zone is shown in Figure 3.5. No 
field speed data was available in the work zone, and consequently the speed limit in the I-57 work 
zone was set to the posted work zone speed limit value of 45 mph.  

 

Figure 3.4: Eastbound road network near the I-80 work zone.  
The deployed RTMS are labeled in light gray; radar sensors are in black. 

 

Figure 3.5: Southbound road network near the I-57 work zone.  
The deployed RTMS are labeled in light gray; radar sensors are in black. 
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3.4 CALIBRATION OF WORK ZONES  

The simulated microscopic traffic behavior is influenced by a large number of adjustable microscopic 
parameters. Calibration of a microsimulation model is the selection of a set of values for parameters 
such that the simulated microscopic traffic exhibits similar macroscopic traffic characteristics as 
observed in the field (e.g., similar queue propagation speed). 

The objective of this study is to reproduce severe traffic congestion in selected periods in two work 
zones. Therefore, a calibration step was conducted to properly select a set of microscopic 
parameters. 

This section summarizes the calibration process in this study. First, a literature review was conducted 
to identify the standard procedure and available tools for the calibration of a microsimulation model. 
Then an automated calibration framework was developed following the standard calibration 
procedure and using a nonlinear simulation-based optimization program. A sensitivity analysis for 
identifying the critical parameters to be calibrated and a validation of the developed automated 
calibration framework can be found in Appendix A. Finally, the calibration results are summarized for 
each work zone.  

3.4.1 Literature Review on Calibration of Microsimulation Models  

The standard procedure for the calibration of a microsimulation model can be found in [58]. In 
general, the calibration procedure consists of five steps, as illustrated in Figure 3.6: 

1. Identify a set of sensitive microscopic parameters to be calibrated. Though a large number of 
microscopic parameters are adjustable, only a subset of parameters is very sensitive in terms 
of influencing the traffic behavior in a specific simulation setup. In addition, calibrating all 
microscopic parameters is extremely time consuming and unrealistic in practice. Therefore, it 
is highly recommended to first identify a small set of sensitive parameters based on the 
literature review, prior knowledge, and sensitivity analysis techniques [59, 60]. 

2. Evaluate the default values for the parameters. The simulation outputs using the default 
values (e.g., velocity or flow measurements) are compared with the field data to compute a 
measure of goodness of fit. The default parameters can be used as the benchmark for 
assessing the effectiveness of the calibration. 

3. Adjust the values of the selected sensitive parameters. Depending on the initial evaluation 
result, a subset of the sensitive parameters is adjusted to achieve better goodness of fit. 
These values can be manually adjusted, which, however, relies strongly on the analyst’s prior 
knowledge. Alternatively, an optimization program can be employed to automate the 
adjustment of the parameter values, which will be discussed shortly. 

4. Simulate the work zone traffic in the microsimulation using the new set of parameters. The 
microscopic simulation is a stochastic process, and consequently multiple runs (typically ten 
replications) are required to minimize the dependency of the simulated traffic on the random 
number generator used in the simulator. Commonly, the microsimulation is the most time-
consuming step. 
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5. Evaluate the simulated traffic using a selected metric that quantifies the goodness of fit to the 
field data. 

Calibration of a microsimulation model is generally a challenging problem owing to the large number 
of correlated microscopic parameters. The combination of the parameters can explode to millions, 
which makes an exhaustive search time consuming and impossible in practice. 

Earlier attempts are commonly based on trial-and-error manner to manually adjust the parameters 
that could reproduce the traffic condition as observed in the field. The effectiveness of the manual 
calibration relies strongly on the analyst’s knowledge and can be extremely time consuming, even for 
a small-scale network and a few parameters [61]. 

Alternatively, automated calibration has been explored in recent years. The calibration of a 
microsimulation model is essentially an optimization problem (i.e., maximizing the goodness of fit of 
the simulated traffic to the field observation data, by adjusting the microscopic parameters). 
Automatic calibration is a procedure that employs an optimization program in the step for searching 
potentially better values for the parameters. Compared with manual calibration, automatic 
calibration has been shown to be capable of significantly reducing the calibration time (from months 
to hours) while achieving similar calibration accuracy [62]. 

 
 

Figure 3.6: Procedure for calibrating a microsimulation model. 
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A variety of nonlinear optimization programs and commercial software have been previously 
proposed for the calibration of microsimulation models. Representative algorithms include Simplex 
[63], simultaneous perturbation stochastic approximation (SPSA) [64, 65], genetic algorithm [64], and 
OptQuest [66]. A comprehensive comparison of these nonlinear optimization programs on the 
effectiveness of calibrating microscopic model parameters was reported in the MULTITUDE project 
[66]. Recently, an advanced nonlinear optimization by mesh adaptive direct search (NOMAD) [67] 
software was also used for the calibration of microscopic traffic models [68]. Considering the 
software availability and the implementation effort, this study adopts NOMAD as the nonlinear 
optimization software in the calibration process. 

3.4.2 Automated Calibration Framework  

This study adopted the automated calibration approach following the standard procedure shown in 
Figure 3.6. The nonlinear optimization program NOMAD was integrated with AIMSUN for adjusting 
the microscopic parameters. 

Based on an extensive literature review [58, 60, 62, 63, 69, 70, 71, 72, 73], empirical knowledge, and 
a sensitivity analysis (which is described in Appendix A), eight parameters were identified as sensitive 
and associated with two types of vehicles: 

 Speed acceptance (speedAcceptance). This parameter multiplied by the speed limit on the 
road section determines the desired speed of vehicles. This parameter was found to be 
sensitive only for passenger cars. 

 Maximum acceleration (maxAccel). This parameter was found to be sensitive only for trucks in 
stop-and-go traffic. 

 Sensitivity factor (sensitivityFactor). This parameter represents the estimation of a vehicle on 
the deceleration rate of its leading vehicle. By setting this parameter below or above 1, the 
following vehicle underestimates or overestimates the deceleration rate of the leading 
vehicle, hence being more or less aggressive. This parameter was found to be sensitive for 
both car and truck types. 

 Reaction time (reactionTime). This parameter is the time for a driver to react to speed changes 
in the preceding vehicle. This parameter was found to be sensitive for both car and truck 
types. 

 Minimum headway (minHeadway). This parameter determines the minimum headway (i.e., 
the time difference of two consecutive vehicles passing the same location) of a vehicle to its 
preceding vehicle. This parameter was found to be sensitive for both car and truck types. 

The objective of the calibration in this study is to reproduce the severe traffic congestion in a specific 
period in the work zones, instead of developing a general microsimulation model. Therefore, 
considering the significant amount of time required in the simulation step, only one replication was 
simulated for each set of parameters. 
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The root-mean-square error (RMSE) was selected as the error metric considering its reliable 
performance for measuring the goodness of fit [66]. Because there was a lack of high-quality flow 
data from the deployed work zone sensors as reported in Section 3.2, only the velocity data was used 
in the error metric to calibrate the microsimulation. 

The inflow to the modeled freeway section was manually calibrated based on the flow measurement 
from the first sensor in each work zone. The truck ratio, the on-ramp and off-ramp flows were 
determined using the Illinois online database http://www.gettingaroundillinois.com/ 
gai.htm?mt=aadt, and http://idot.ms2soft.com/tcds/tsearch.asp?loc=Idot&mod=. 

The developed automated calibration framework was validated in a synthetic work zone described in 
Appendix A.2, where the true values of the calibrated parameters were known. The validation results 
showed the developed framework could effectively improve the goodness of fit of the simulated 
traffic to the field data. Meanwhile, the validation results confirmed the difficulty of the calibration of 
microsimulation models. Owing to the nonlinear correlation between parameters, different 
combinations of parameter values can achieve similar goodness of fit, which had been previously 
identified [66]. As a result, the combination of extreme values for two parameters may produce 
reasonable macroscopic traffic characteristics. However, such extreme values are less desirable, 
though the corresponding goodness of fit may be optimal. Therefore, after the automated 
calibration, a final selection step should be performed among the best auto-calibrated parameter 
values to select a set of plausible parameters based on empirical knowledge. 

3.4.3 Calibration Results of Two Work Zones  

The calibrated values for the parameters in the I-80 work zone after approximately 1,000 iterations 
and the final selection are summarized in Table 3.8. The calibrated values achieved an approximately 
40% reduction in the speed RMSE compared with the default values. 

Table 3.8: Calibrated Values for the I-80 Work Zone 

Parameter Default Value Calibrated Value 

car speedAcceptance 1 1.09 
truck maxAccel (m/s2) 1 0.82 
car sensitivityFactor 1 0.5 
truck sensitivityFactor 1 1.02 
car reactionTime (s) 0.8 0.6 
truck reactionTime (s) 0.8 0.8 
car minHeadway (s) 0 1.5 
truck minHeadway (s) 0 2.5 

speed RMSE 283.2 168.3 
              m: meter;  s: second 

 

http://www.gettingaroundillinois.com/%20gai.htm?mt=aadt
http://www.gettingaroundillinois.com/%20gai.htm?mt=aadt
http://idot.ms2soft.com/tcds/tsearch.asp?loc=Idot&mod=
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The calibrated values for the parameters on I-57 after approximately 800 iterations and the final 
selection are summarized in Table 3.9. The speed RMSE for the calibrated value decreased by only 8% 
compared with the default value. The main reason for the insignificant reduction of the RMSE was 
the high percentage of missing data during the congested period as identified in Section 3.2. 

Table 3.9: Calibrated Values for the I-57 Work Zone 

Parameter Default Value Calibrated Value 

car speedAcceptance 1 1.1 
truck maxAccel (m/s2) 1 0.9 
car sensitivityFactor 1 1.0 
truck sensitivityFactor 1 1.0 
car reactionTime (s) 0.8 0.6 
truck reactionTime (s) 0.8 0.8 
car minHeadway (s) 0 2.0 
truck minHeadway (s) 0 2.0 

speed RMSE 337.8 310.4 
               m: meter;  s: second 

3.5 SENSOR MODELS  

The microsimulation software AIMSUN allows error-free sensors to be placed in the simulation 
environment, but it lacks realistic traffic sensor error models representative of sensors deployed in 
work zone environments. Alternatively, AIMSUN can export the trajectory data at a fine granularity 
for each vehicle, which allows the development of customized sensors. This section presents how 
microsimulation trajectories are used to generate noisy traffic sensor data that reflects the true 
errors observed in the field. 

3.5.1 Overview of Sensor Types  

To better assess how different types of sensors featuring distinct measurement errors affect the 
traffic estimation accuracy, realistic sensor models were developed to degrade the simulated traffic 
measurements to be consistent with the data quality observed in practical field deployments. A large 
variety of sensor technologies have been applied to traffic monitoring. Interested readers are 
referred to the Traffic Detector Handbook [74, 75] for the comprehensive description and evaluation 
of traffic sensor technologies. In this study, three types of sensors commonly used in work zones 
were modeled: Doppler radar, LER units (e.g., iCone® sensor), and RTMS. 

Doppler radar (heretofore referred to as radar) is widely used in traffic sensing because the 
technology is mature and the cost is low. Doppler radar relies on the Doppler effect for measuring the 
velocity of vehicles, and it provides accurate velocity measurement for vehicles (less than 1 mph 
[76]), although performance degrades at lower velocities, where the Doppler shift is not as 
prominent. The traffic flow data is obtained by counting the number of velocity measurements 
recorded during each detection cycle. For best performance, Doppler radar units are commonly 
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mounted relatively low to the ground (a minimum 3 feet [76]). Consequently, the sensor is prone to 
occlusion issues (e.g., where one vehicle blocks another vehicle in an adjacent lane from being 
detected by the sensor), which may result in biased velocity and flow measurements when deployed 
on multi-lane freeways. 

LER units are deployed in traffic control drums for ease of deployment, but they have limited battery 
capacity available for detection. For long-term deployments, a basic operational mode of sensors 
consists of the sensor operating for only part of each detection cycle (typically 30 seconds of 
detection in a 60 second detection cycle, per a 2010 technical report [55]). Consequently, these 
sensors have measurement errors similar to those found with radar units for velocity and count data, 
as well as an additional sampling error related to the discontinuous operation. 

The RTMS measures the distance to objects in the path of its microwave beam; hence, it is able to 
detect moving and stationary vehicles in multiple detection zones (lanes). The RTMS is commonly 
mounted in an elevated position (at least 17 feet [77]), which reduces the occlusion potential and 
increases the counting accuracy compared with lower positioned sensors. With proper field 
calibration, the RTMS produces velocity measurements with 10% error, with larger velocity errors in 
heavy congestion [77]. 

3.5.2 Generation of Noisy Measurements  

A multistep process is used to convert the detailed trajectory data from AIMSUN into noisy sensor data to 
mimic the field data collected from the sensors described above. The first step is to determine which 
vehicles pass through the detection zone of a given sensor. The detection zones for each sensor are 
modeled based on the recommended installation guidelines [76] and the reported field of view. For 
example, the radar and LER sensors are aimed at oncoming traffic, resulting in a detection zone 
approximately 140 feet upstream of the sensor, as shown in Figure 3.7. The detection zone of the LER is 
assumed active for only the first half of the detection cycle, resulting in the detection of only a subset of 
vehicles. The RTMS detection zone is located at the installation point. For a given detection cycle, the 
vehicles that pass through the detection zone are potentially available to contribute to the average 
velocity or count measurements. 

 

Figure 3.7: Illustration of an occluded vehicle A  

caused by the presence of vehicle B in the detection zone. 
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The next step is to discard any vehicle that passes through the detection zone whose trajectory is 
occluded by another vehicle. As illustrated in Figure 3.7, two vehicles, labeled A and B, travel through 
the sensing area in the outside lane and inside lane, respectively. Vehicle A is considered occluded if 
more than po percent of the trajectory of vehicle A overlaps with the trajectory of B in the detection 
zone. The parameter 𝑝𝑜 is selected as 𝑝𝑜 = 30% which results in the occlusion of approximately 40% of 
vehicles in heavy congestion. Occluded vehicles are removed for radar and LER sensors, while RTMS 
are assumed to be mounted in a position to prevent occlusion, but the count is still perturbed by a 
counting error consistent with the reported accuracy [77]. 

After occluded vehicles are removed, any vehicle with a velocity outside the measurement range of 
the sensor is also discarded. The radar and LER sensors have a measurement range of 5~99 mph [76], 
while the RTMS has a range of 0~110 mph [77]. 

For vehicles that remain, the measured velocity is assumed to be a reading of the true vehicle velocity 
perturbed by measurement error. Measured velocities are constructed by adding a measurement 
error generated from 𝑁 (0, 𝜎) to the true velocity, where 𝜎 takes two distinct values in free-flow and 
congested traffic. For the radar and LER sensors, 𝜎 is chosen such that the true vehicles are measured 
with an accuracy of 1 mph, while the RTMS velocities are measured to within 10%. At low vehicle 
velocities, the errors are increased to 2 mph for radar and LER, and 15% for the RTMS devices. Note 
that although the measurement error is assumed unbiased, the average velocities and counts are 
biased because of the sample set (i.e., removing occluded vehicles, which are predominantly from the 
faster lane of traffic). Finally, the harmonic mean of the noisy velocity measurements is taken as the 
average velocity reported by the sensor, and the number of measurements is the count. 

To model the realistic missing data rates that occur in field deployments, a subset of measurement 
detection cycles is also discarded, resulting in no data available for estimation during the cycle. Up to 
15% of the data from the radar and LER sensors and 3% of the data from RTMS are dropped in during 
congested conditions, based on the missing data rates observed from work zone field data in Illinois. 
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CHAPTER 4: TRAFFIC ESTIMATION ALGORITHMS  

This chapter is devoted to the description of the traffic estimation algorithms implemented for 
estimating the velocity, queue length, and travel time. Consider a segment of roadway of length 𝐿 

containing a work zone, observed over a period of time 𝑇. The velocity along the roadway is denoted 
𝑣 (𝑡, 𝑥), where 𝑡 ∈  [0, 𝑇] and 𝑥 ∈  [0, 𝐿]. If a queue develops on the segment because of a bottleneck 
created by the work zone, the length of the queue is denoted 𝑙(𝑡) ≥ 0. Finally, the travel time of a 
vehicle entering the roadway at time t traveling the length of the road segment 𝐿 is denoted 𝜏 (𝑡). In 
this study, the velocity along the roadway is directly estimated, which is then used to estimate the 
travel time and the length of the queue when it occurs. The evaluated traffic estimation algorithms 
are described next. More technical details can be found in Appendix C. 

4.1 SPATIAL INTERPOLATION 

A common class of algorithms infer the traffic conditions along the roadway by spatially interpolating 
the measurement data obtained from sensors. Such strategies include constant interpolation [78], 
min interpolation [79] adopted by the Texas DOT, averaging interpolation [80], the mid-point 
algorithm adopted by the Chicago DOT [81] and Wisconsin DOT [81], and the three-segment 
algorithm [82]. More sophisticated interpolation strategies, such as linear interpolation [83] and 
quadratic interpolation [84] have also been proposed. 

Considering the performance and ease of implementation, the linear spatial interpolation was 
selected as a representative interpolation algorithm for further evaluation. To estimate the velocity 
𝑣(𝑡, 𝑥) between a pair of sensors located at 𝑥1 and 𝑥2 (> 𝑥1) with corresponding measured velocities 
�̃�1 and �̃�2, the estimated velocity 𝑣(𝑥, 𝑡) for 𝑥 ∈ [𝑥1, 𝑥2] is computed as follows: 

   (4.1) 

The same process is repeated for each pair of adjacent sensors to obtain the estimated velocity field 
throughout the spatial domain. 

4.2 SPATIO-TEMPORAL FILTERING 

One criticism of spatial interpolation algorithms is that they do not directly account for the spatio-
temporal dynamics of traffic. A number of research articles have developed algorithms that attempt 
to circumvent these limitations. 

A two-dimensional interpolation algorithm for speed-map reconstruction and travel time estimation 
was proposed in [85]. This algorithm produces speed estimates at any point (𝑡, 𝑥) as a weighted 
average of four neighboring sensor measurements in the time-space domain; that is, a point of 
estimation between two sensor deployments (in space) and two sensor reports (in time). The weight 
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of each measurement is a function of the distance to the point of estimation. This results in a smooth 
speed surface that is then used to reconstruct vehicle trajectories. 

A trajectory reconstruction–based method was explored in [86]. That algorithm relies on first-order 
traffic flow theory to extrapolate traffic states at sensor locations to an extended segment of road. 
The general idea is to reconstruct vehicle trajectories using discrete speed observations of vehicles as 
they cross the sensor location. Each observation is assumed representative of the speed state in a 
subset of the time-space domain, with a width delimited by the headway between vehicles and 
projected in time and space (upstream or downstream of the sensor location) based on wave 
propagation speeds. Once a new observation arrives, the next subset of the time-space domain is 
determined and the speed state is updated. The vehicle trajectories are reconstructed by 
concatenating the projected traffic states. 

A kernel smoothing technique that incorporates traffic dynamics was developed in [87]. This type of 
algorithm was further adapted to the context of heterogeneous data sources [88, 89]. More 
importantly, it was improved in [81] to avoid structural bias in travel time estimation. 

The main idea of this family of spatio-temporal estimators is to estimate traffic speed (which is equal 
to the inverse of the traffic pace) using a weighted average of the available sensor measurements. 
The weight of each measurement is given by an exponential decay function that penalizes 
measurements that are distant to the point of estimation. This distance, however, is offset in the time 
dimension to account for the propagation of traffic waves. An underlying assumption is that the 
traffic wave propagation velocity is constant for a given traffic state. Because the traffic wave 
propagation velocities in congestion and free flow differ, two estimates are produced: one assuming 
free flow and one assuming congestion. The final estimate is obtained as a convex combination of the 
free-flowing and congested estimates. 

Considering the scalability, robustness and ease of online implementation required for this research, 
the filtered inverse speed-based estimation algorithm proposed by Van Lint [81] was selected as 
representative of the spatio-temporal estimation algorithms. 

The selected parameter values for the implemented spatio-temporal algorithm can be found in 
Appendix C.1. 

4.3 KALMAN FILTER 

The Kalman filter [92] is an algorithm used to estimate the state of a linear system by correcting a 
model-based prediction with measurement data. The Kalman filter and its nonlinear extensions 
necessary for traffic estimation can be understood by posing the model and sensor measurement 
processes in state space form as follows: 

     (4.2) 

The first line in Equation 4.2 is known as the evolution equation, where 𝑥𝑛 is the traffic state vector at 
time step 𝑛 to be estimated, ℱ denotes the traffic flow model used to predict the traffic state at time 
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𝑛 given the traffic state at time 𝑛 −  1, and 𝜂𝑛
 
∼  (0, 𝑸) is a white noise process with covariance 𝑸. 

The second line in Equation 4.7 is the observation equation that relates the vector of measurements 
�̃�𝑛 received at time 𝑛 with the traffic state variables 𝑥𝑛 through the measurement model ℋ. The 
random variable 𝜖𝑛

 
∼  (0, 𝑹) denotes the measurement error distribution and is modeled as white 

noise with covariance 𝑹. The Kalman filter and its nonlinear variants are sequential-state estimators 
that are optimal estimators (in the best linear unbiased sense) of the state 𝑥𝑛 given a sequence of 
measurements �̃�0, ⋯ , �̃�𝑛. 

Considering the nonlinearity of the traffic models, a number of variations of Kalman filter have been 
explored for estimation of the traffic conditions, including the extended Kalman filter (EKF) [19], the 
unscented Kalman filter (UKF) [93], the mixture Kalman filter (MKF) [94, 95], the particle filter (PF) 
[96, 97], and the ensemble Kalman filter (EnKF) [98]. 

EKF relies on the linear approximation of a nonlinear system, and it has been used to estimate the 
traffic density [19, 99]. The computation of the Jacobin matrix in the linearization step is in general 
computationally heavy; hence, a simultaneous perturbation technique was proposed [100] to 
improve the efficiency of the linearization step. 

In the traffic estimation, the nonlinearity of the traffic dynamics comes from the nonlinear 
relationship between the flow and density. The empirical nonlinear relationship, known as the 
fundamental diagram, can be approximated by a piecewise linear function. Physically, this indicates 
the nonlinear system (Equation 4.2) consists of several modes (i.e., free flow or congested) under 
which the system is linear. Based on this observation, the MKF was proposed [94, 95, 101] to model 
the traffic as a switched state system. 

The linear approximation of the EKF can give poor performance for a nonlinear system, and the 
piecewise linear assumption on the fundamental diagram. Therefore, UKF [102] has been developed 
based on a deterministic sampling technique to estimate the propagation of the error covariance 
matrix, which does not require the linear approximation or assumption. 

A more general approach is the Monte Carlo based PF [96, 97, 103], which can be applied to generic 
nonlinear systems with possibly non-Gaussian distributions. Compared with the UKF, PF gives higher 
estimation accuracy but at a cost of computationally expensive [104]. Assuming all probability 
distributions associated in the system are Gaussian, EnKF [98, 105] can achieve similar performance 
as PF and is more computationally efficient. 

In summary, the EKF, MKF, UKF, EnKF rely on linearization of the system for closure assumptions on 
the state error distributions, while the PF is a fully nonlinear Bayesian estimator that can be 
computationally expensive for large systems. Consequently, the EnKF is implemented as 
representative filtering algorithm for work zone traffic state estimation. More technical detail of the 
EnKF algorithm and its implementation can be found in Appendix C.2.  

4.4 BACK-OF-QUEUE AND TRAVEL TIME ESTIMATION 

In this study, given an estimate of the velocity 𝑣(𝑡, 𝑥) in space and time, a standard approach across 
algorithms was used to estimate the length of the queue and the travel time. 
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Algorithms specifically for queue estimation have also been previously developed. A classic approach 
is to estimate the queue length based on the cumulative inflow and outflow [109, 110], which is, 
however, sensitive to the length of the road and the measurement error of sensors. Higher queue 
length estimation accuracy can be achieved with more-advanced techniques, such as incorporation of 
the queuing dynamics [111] and the Kalman filter [112]. 

For fair comparison of the implemented algorithms covering three levels of sophistication, the queue 
length is computed based on the estimated velocity field. Specifically, the estimated length of the of 

the queue 𝑙(𝑡) is determined as the maximum length of any consecutive segment in the velocity field 
such that 𝑣(𝑡, 𝑥) < 𝛼, where 𝛼 is a threshold denoting congested traffic velocities. In this study, 𝛼 
was selected as 40 mph. 

This study uses the speed-based travel time estimation method [113] considering its simplicity. The 
travel time is computed using an instantaneous [114] travel time estimate: 

     (4.3) 

The instantaneous travel time is valid under the assumption that the velocity field is constant over 
the time interval [𝑡, 𝑡 + 𝜏(𝑡)], which may fail in scenarios with rapid queue growth or dissipation. The 
primary benefit of the instantaneous travel time is that it does not require the future traffic state to 
be predicted. Other statistical travel time estimation and prediction models using historical data are 
discussed in [115, 116]. 
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CHAPTER 5: COMPARATIVE ANALYSIS 

This chapter summarizes the key findings based on the quantitative comparison across various sensor 
network configurations and traffic estimation algorithms. A subset of the simulation results from the I-
80 work zone are visualized and discussed in this chapter to justify the findings. Similar findings were 
obtained from the I-57 work zone, and the complete simulation results are included in Appendix D. 

5.1 TRAFFIC ESTIMATION ERROR METRICS 

The error metrics used to assess the performance of the various estimators are briefly described. To 
calculate the errors, the true state to be estimated is first calculated from the AIMSUN trajectory 
data. The true velocity field (Figure 5.1a), true queue length (Figure 5.1b), and true travel time (Figure 
5.1c) are constructed on a finely discretized spatio-temporal grid with 𝑚 ∈  {1, . . . , 𝑚𝑚𝑎𝑥} space cells 
of length 50 meters and 𝑛 ∈  {1, . . . , 𝑛𝑚𝑎𝑥} time steps with a duration 5 seconds. Within each grid the 
true velocity 𝑣(𝑛, 𝑚) is computed using Edie’s definitions [117]. The true travel time 𝜏 (𝑛) is taken as 
the average travel time of all vehicles entering the roadway during the time step 𝑛, and the true 
length of the queue 𝑙(𝑛) is computed as the maximum length of a space segment with a velocity of 
less than 40 mph. 

The mean absolute error (MAE) is used as the error metric to quantify the estimation accuracy. Four 
types of MAE errors are computed, namely, (1) 𝑒𝑣 , the MAE the estimated velocity over the entire 

spatio-temporal domain; (2) 𝑒𝑣
𝑞  

, the MAE of the estimated velocity in an area near the back of the 
queue (i.e., the error of the velocity in an area defined by ± 0.5 mile around the true location of the 
back of the queue); (3) 𝑒𝑙, the MAE of the estimated queue length; (4) 𝑒𝜏 , the MAE of the estimated 
travel time. 

Specifically, given the estimated velocity 𝑣(𝑛, 𝑚), the MAE of the velocity estimates over the entire 
time-space horizon is defined as follows: 

   (5.1) 

The metric 𝑒𝑣 measures the average estimation accuracy of the velocity over the entire spatio-
temporal domain. However, the most safety-critical area is the area around the location of the end of 
the queue, where accurate velocity estimates are most desirable. Therefore, the MAE of velocity 

estimates around the queue 𝑒𝑣
𝑞
 is introduced: 

       (5.2)  

where 𝑚 − (𝑛), 𝑚 + (𝑛) denotes the ± 0.5 mile location of the end of the queue at time step 𝑛. The 
summation of the absolute error is averaged over the number of cells 𝑀 involved in the computation. 
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(a) True velocity field over 5 miles and 2.5 hours 

 

(b) True queue length over 2.5 hours. 

 

(c) True travel time over 2.5 hours. The true travel time was not  
obtained in the last period because vehicles that entered the road segment after  

approximately 2 hours did not exit before the simulation stopped. 

Figure 5.1: True state of the (a) velocity field, (b) queue length, and (c) travel time  
obtained in simulation for I-80 over 5 miles between 1530 and 1800 hours on May 1, 2015. 
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Similarly, the MAEs of the queue length 𝑒𝑙 and the travel time 𝑒𝜏 are defined as follows: 

    (5.3) 

and 

    (5.4) 

5.2 ALGORITHMS AND SENSOR SPACINGS 

In the first set of experiments, the influence of the sensor spacing and traffic estimation algorithm on 
the travel time, queue length, and velocity estimation error are analyzed. For each algorithm, 11 
spacings ranging from 1/8 mile to 5 miles are considered for I-80. All sensors are assumed to be RTMS 
in these experiments. Similar findings are made for other types of sensors and on I-57, which are 
attached in Appendix D. 

For each experiment, the MAE on the velocity estimate is computed both as an average over the 
entire spatio-temporal domain, as well as in the area immediately around the true back of queue (± 
0.5 mile) as identified in AIMSUN. The resulting errors as a function of the algorithm type and sensor 
spacing are shown in Figures 5.2 and Figure 5.3. As expected, as the density of sensors increases; all 
algorithms result in lower velocity errors, with the best performance (about 5 mph error overall and 6 
mph around the queue) by the linear interpolation algorithm with sensors placed every 1/8 mile. Not 
surprisingly, all algorithms perform worse in the neighborhood of the queue compared with the MAE 
reported over all space and time, which is unfortunately where the errors may be most safety-critical. 
The spatio-temporal algorithm has the highest error around the queue, which results in higher total 
MAE compared with the spatial interpolation algorithm. Note that the algorithm was originally 
proposed as an offline algorithm [81], and the performance may change if additional measurement 
data is available for smoothing. At very dense sensor spacings, the EnKF performs worse than the 
interpolation and smoothing algorithms because the velocity is computed from the density estimate 
through (4.9) rather than being directly estimated, as in the better-performing algorithms. However, 
in the neighborhood of the queue, the EnKF localizes the queue more accurately, which generally 
results in higher-quality velocity estimates in the neighborhood of the queue. 

The general trend of the MAE for the queue length estimation (Figure 5.4) is similar to the velocity 
MAE. This is a direct result of the fact that the queue length is estimated from the velocity field, and 
consequently improvements on the velocity field result in better queue length estimates. The true 
maximum true queue length during the simulation is approximately 3 miles. Traffic in the queue is 
characterized by speeds less than a threshold speed, set as 40 mph in the present study. The EnKF 
uses a traffic model and uses the flow measurements from RTMS to consistently outperform the 
other estimators across a wide range of sensor spacings. 
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Figure 5.2: MAE of the velocity field over the entire spatio-temporal  
domain using RTMS across a range of spacings. 

 

Figure 5.3: MAE of the velocity field around ± 0.5 mile of the location  
of the end of the queue using RTMS across a range of spacings. 

Finally, the MAE of the travel time estimation over a 5-mile distance is shown in Figure 5.5. The travel 
time of the road section in free flow is around 5 minutes, and the longest travel time during 
congestion is 40 minutes. The EnKF is generally the best-performing travel time estimator, and it 
offers slightly improved performance over the spatio-temporal smoother. Recall that the spatio-
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temporal algorithm directly estimates the pace of traffic (i.e., the inverse of traffic velocity), which 
results in a better estimate of the travel time than the purely spatial interpolation algorithm. The 
MAE for travel time is relatively large for all algorithms independent of the spacing, and the largest 
source of error is due to the use of the instantaneous travel time calculation (Equation 4.21), not the 
underlying velocity estimate. In fact, the true instantaneous travel time has an MAE of more than 6 
minutes, which is comparable to the MAE observed in the travel time estimates of the best-
performing algorithms. In traffic conditions with slower dynamics (e.g., in free flow or in complete 
congestion), the use of the instantaneous travel time may result in lower errors. 

 

Figure 5.4: MAE of the queue length estimation using RTMS across a range of spacings. 

5.3 TYPE OF SENSORS 

In the next set of experiments, the influence of the sensor type (i.e., RTMS, radar, and LER) and the 
errors they introduce were compared across algorithms. Recall that the RTMS offers the lowest-
quality velocity measurement of individual vehicles but provides more reliable count data than the 
radar-based sensors. The MAE for the estimated traffic velocity, the queue length, and the travel time 
are shown in Figure 5.6a, Figure 5.6b, Figure 5.7a, Figure 5.7b, respectively, for sensors placed at a 
spacing of 1 mile. 

To understand the potential benefit of improved sensor technologies, traffic estimates using an ideal 
sensor are also generated. The ideal sensor is assumed to have zero error (i.e., it measures the 
velocity of every vehicle exactly and has no occlusion or dropped packets). It does have a 
quantization error because the count and velocity are computed within a single detection cycle. For 
example, if the aggregation interval is 30 seconds, the quantization error (e.g., including or excluding 
a single vehicle near the cycle boundary) introduces a change in the flow of 120 vehicles/hour/lane. 
Algorithms running with measurements from the ideal sensor have velocity, queue, and travel time 
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errors that are similar to those of the RTMS, which indicates that quantization error is the largest 
source of remaining error from the existing sensors. 

 

Figure 5.5: MAE of the travel time estimation using RTMS across a range of spacings. 

The analysis also indicates that the EnKF algorithm is the most sensitive algorithm to the sensor type, 
and it provides the poorest velocity estimates when combined with LER sensors. This is due to the 
reliance of the EnKF algorithm on accurate flow data, which is degraded in the LER devices because 
vehicles are recorded for only a portion of the detection cycle (resulting in increased quantization 
error), and the counts are prone to larger occlusion errors. Across all traffic quantities and all 
algorithms, the radar and RTMS offer at least as good or better accuracy performance than the LER 
devices. The use of LER devices may still be warranted if the cost of the LER allows more sensors to be 
deployed compared to RTMS or radar systems. 

5.4 ACCURACY OF SENSORS 

The third set of experiments was to compare the influence of the accuracy of individual sensors with 
the estimation accuracy. 

Synthetic sensors that may be available in the future were simulated for the RTMS, radar, and LER 
sensors. The synthetic sensors feature reduced the standard deviation of the measurement noise 
(more-accurate sensors) and the missing data rates (more reliable sensors). For example, a sensor 
RTMSx2 denotes a synthetic RTMS whose measurement noise and the percentage of missing data are 
reduced by a factor of 2 from the currently available RTMS in the market. In total, seven synthetic 
sensors were simulated: RTMSx2, RTMSx4, RTMSx8, RADARx2, RADARx4, RADARx8, and LERx2. In 
addition, an ideal type of sensor without measurement error was simulated to assess the maximum 
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improvement of the estimation accuracy that can be obtained by improving the accuracy of individual 
sensors, which was addressed in the discussion of the last experiment in Section 5.3. 

  

             (a)           (b) 

Figure 5.6: MAE of the velocity estimation: (a) over the entire spatio- 
temporal domain, and (b) ± 0.5 mile around the end of the queue with  

different types of sensors at 1 mile spacing in the I-80 work zone. 

It should be noted that the occlusion error is caused by the operation principle of the radar and LER 
sensors. Hence, the same occlusion model as described in Section 3.5 is used for the synthetic radar 
and LER sensors. 

The MAE estimation errors of the velocity, queue length, and travel time using multiple levels of 
accuracy of RTMS at 1 mile spacing are compared in Figure 5.8a, Figure 5.8b, Figure 5.9a, Figure 5.9b. 
As shown in the figures, further improvement of the accuracy of an individual RTMS provides 
negligible benefit for the estimation accuracy. Recall in the analysis of the influence of sensors types 
that the quantization error was around 5%. The existing commercial RTMS already achieve flow 
measurements to within the 5% error, which indicates that measurement accuracy will be dominated 
by the quantization error even if sensor accuracy is improved. Marginal benefit will be obtained if the 
quality of the sensing device is improved beyond the current market technologies. Similar findings 
were found with other types of sensors, and the general trends are similar at other sensor spacings. 
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(a) (b) 

Figure 5.7: MAE of the (a) queue estimation, and (b) travel time estimation  
with different types of sensors at 1 mile spacing in the I-80 work zone. 

 

(a) (b) 

Figure 5.8: MAE of the velocity estimation: (a) over the entire  
spatio-temporal domain, and (b) ± 0.5 mile around the end of the queue using  
RTMS with multiple levels of accuracy at 1 mile spacing in the I-80 work zone. 
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(a) (b) 

Figure 5.9: MAE of the (a) queue estimation, and (b) travel time estimation using  
RTMS with multiple levels of accuracy at 1 mile spacing in the I-80 work zone. 

5.5 COST ACCURACY ANALYSIS 

This section summarizes the cost accuracy analysis based on the estimation results across different 
sensor network configurations and algorithms. 

The cost analysis was conducted in collaboration with IDOT, which provided several sets of cost data 
from deployed smart work zones. Typically, the smart work zone system is contracted to a vendor. 
The vendor is responsible for the deployment, maintenance, and removal of the smart work zone 
system. The total price of a system is provided by the vendor, which varies in the number and types 
of sensors used, as well as the duration of the project. 

One dataset from IDOT estimated that the unit monthly cost for the radar sensor was approximately 
$1,500, including deployment and removal costs based on two projects of 5-month durations 
(Contract No. 76D20 and No. 76D21). A separate dataset provided the cost of different type of 
sensors in the Ver-Mac system, which likely did not include the overhead cost from the deployment 
and removal of the system. Based on this dataset, the unit monthly costs for the RTMS and the radar 
are in the ranges $600 to $1,000 and $400 to $700, respectively. 

The cost analysis in this study used the monthly cost per sensor, excluding the initial deployment and 
final removal costs. Based on the limited cost data, the monthly cost of the RTMS is assumed to be 
$1,000 while the radar is $700. 

The cost accuracy curves for the velocity, queue length, and travel time using sensor types and 
algorithms are plotted in Figure 5.10, Figure 5.11, Figure 5.12, and Figure 5.13. Two findings can be 
obtained from the curves. 
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First, the improvements of the estimation accuracy for the velocity and the queue are marginal after 
the monthly cost of $10,000 (approximately 10 RTMS or 14 radar units deployed in 5 miles for I-80). 
The travel time estimation is consistently poor regardless of the algorithms, type, or number of 
sensors. As discussed previously, the reason is that the dominating source of error of the travel time 
is the use of instantaneous travel time estimation scheme. A predictive travel time model is critical 
for accurate travel time estimation. 

Second, the nonlinear Kalman filter algorithm is promising for achieving the same level of traffic 
estimation accuracy at lower cost. At the same system cost, the additional radar sensors (because of 
their lower price) provide higher estimation accuracy than the more-accurate but fewer RTMS. 
Considering the lower price for radar sensors, the combination of nonlinear Kalman filter algorithm 
and radar sensors appears to be the most cost effective. 

The cost accuracy analysis in this study was based on very limited cost data. It did not consider the 
cost associated with the deployment, calibration, and removal of sensors. The actual unit price of 
sensors may also vary depending on the number of sensors deployed. 

 

Figure 5.10: Cost accuracy for the velocity estimation over  
the entire spatio-temporal domain in the I-80 work zone. 
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Figure 5.11: Cost accuracy for the velocity estimation at  
± 0.5 mile around the queue in the I-80 work zone. 

 

Figure 5.12: Cost accuracy for the queue length estimation in the I-80 work zone. 
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Figure 5.13: Cost accuracy for the travel time estimation in the I-80 work zone. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

This study evaluated a variety of sensor network configurations and algorithms with different levels 
of sophistication to estimate the traffic velocity, from which back-of-queue and travel time were 
estimated. The main outcomes from this report and potential suggestions for future work zone 
deployments are provided next. Due to the limited nature of the present study (e.g., experiments on 
two work zones in microsimulation), the suggestions should not be viewed as a formal guideline. 
They suggestions are based on the conclusions supported by this study, which should be verified with 
field deployments before a guideline can be constructed.  The main findings and outcomes are as 
follows. 

 The spacing of sensors is an important factor for improving the accuracy of traffic estimation, 
especially at greater than 0.5 mile sensor spacings. When the sensor spacing is smaller than 
0.5 mile, the benefit of additional sensors or the choice of algorithm is marginal (i.e., less than 
5% per sensor). It should also be noted that the spacing or locations of sensors also subject to 
the geometric constraints of the work zone and the work zone system requirements. For 
example, this study did not consider the proper locations for PCMS to disseminate the traffic 
condition information, and it is noted that there may be benefit to locating a sensor at the 
same location as a PCMS. Sensor spacings above a mile have potential to significantly increase 
errors especially in the neighborhood of queues, and should be considered only on a case by 
case basis. 

Outcome: It is suggested that sensor spacings of less than 0.5 mile are unlikely to provide 
significant benefit in the accuracy of estimating traffic conditions. Denser sensor spacings 
could still be warranted based other considerations (e.g., to co-locate with a PCMS). 

 The advanced nonlinear Kalman filtering algorithm is promising for achieving the same level of 
estimation accuracy with fewer sensors, and consequently at a lower sensor deployment cost. 
Implementing advanced algorithms (such Kalman filtering) requires significant amount of 
additional implementation effort compared to the simpler interpolation algorithms, which in 
turn can increase the cost of the smart work zone system. To reduce the deployment effort, 
all the source code developed in this study is publically available. It may require significant 
training to use the algorithm in practice.   

Outcome: The advanced algorithms are used as a proof-of-concept that sophisticated 
algorithms may reduce the error, especially when sensor spacings are high. Due to the 
implementation complexity of the algorithm, it is not expected that many commercial 
vendors will be able to implement the algorithms without significant training from the 
research community, which remains an important challenge to its implementation.  

 The analysis indicates, when using simple algorithms (spatial interpolation and spatio-
temporal filtering), the types of sensors have insignificant influence on estimation accuracy of 
the traffic conditions. Meanwhile, the advanced EnKF algorithm is sensitive to the sensor type 
due to its reliance on accurate flow data. Considering the fact that advanced algorithms are 
not yet commercially available, it is concluded that the sensor type is not a determining factor 
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in the current smart work zone system. The types of sensors should be determined based on 
other practical requirements and limitations in the field beyond estimation accuracy, which 
were not comprehensively investigated in this study. For example, one smart work zone 
vendor confirmed that the RTMS requires significantly more effort for installation and 
calibration, and hence should not be installed in a location that will require moving the sensor 
as the project progresses through the construction phases. In other applications, deployment 
of several RTMS in the work zone is desired since the more-accurate flow data from RTMS can 
be used to obtain performance measures of the smart work zone system, such as the total 
delay. 

Outcome: The analysis indicates the types of sensors do not have significant influence of 
the performance of existing smart work zone systems. It is suggested the choice of sensor 
types should depend on the specific requirements and constraints in each work zone.  

 Improving the accuracy of existing sensors provides marginal benefit. The main reason is that 
the dominating sources of the measurement error are the quantization error and the 
occlusion error. Based on the data quality analysis, the findings in this study suggest that it is 
more important to increase the reliability of sensors. For example, there are many causes for 
the data quality issues ranging from sensor failures to communication failures (e.g., caused by 
the cellular network provider). Some of the causes may be difficult for the work zone vendor 
to resolve directly, such as the prioritization of voice communications over data 
communication by the cellular providers.  

Outcome: It is suggested that the current smart work zone systems are not constrained by 
the accuracy of the individual sensors. It is also suggested that the smart work zone 
systems have varying degrees of data quality problems such as missing data that could be 
monitored and potentially reduced to improve the work zone performance. 

 The travel time estimation is consistently poor for all algorithms and sensor networks 
investigated in this study. The main reason is that the instantaneous travel time calculation is 
a poor estimator of the true travel time in a dynamic traffic environment. In addition, the use 
of Bluetooth sensors can only provide the travel time of vehicles that just exited the work 
zone. Consequently, the travel time estimation even using Bluetooth sensors is not likely to 
improve the accuracy of the travel time estimates when the traffic conditions (and 
consequently the travel time) are quickly changing. Further predictive analytics are needed to 
reduce the travel time error.  

Outcome: It is suggested that the future development of travel time prediction 
algorithms may lead to improvements in travel time estimates in work zones when the 
traffic conditions are quickly changing. No travel time prediction algorithms were 
investigated/evaluated in the present study. 

 A cost performance analysis was conducted to identify the most cost effective configuration 
of sensor networks and algorithms for estimating three quantities: the traffic velocity, the 
queue length, and the travel time. The recommended sensor network and algorithm are 
summarized in a table for each estimated quantity. Considering the fact that the advanced 



49 

algorithm (EnKF) is unlikely to be implemented in practice in the near future, a separate set of 
suggestions of the sensor network and algorithm is summarized for each estimated quantity 
excluding the use of advanced algorithms. The suggestions are presented from two 
perspectives: (i) given the budget (standardized as thousand dollars per month per mile of 
monitored roadway), the best-performing smart work zone system is identified; (ii) given the 
performance requirement, the lowest-cost smart work zone system is identified. It should be 
noted that these findings are made based on limited cost data. Specifically, the LER cost 
information was not available from a comparable data source, hence was not included in the 
cost performance analysis.  

Outcome. Table 6.1 summarizes the best work zone configurations and algorithms for 
the velocity estimation around the queue. The EnKF and radar sensors dominate the 
lowest-error and lowest-cost smart work zone configurations. This outcome is 
consistent with the finding that the spacing of sensors plays a more important role 
than the type of sensors. When excluding the EnKF, the best alternative algorithm 
identified in the microsimulation is the spatial interpolation algorithm.  

Table 6.1: Best Smart Work Zone Deployments for Velocity Estimation 

Velocity 
estimation 
around the 

queue 

Best SWZ within specified budget 

Budget 
($k/month 

/mile) 

Best SWZ Best SWZ excluding EnKF 

Algorithm 
Sensor 
spacing 
(miles) 

Error (mph) Algorithm 
Sensor 
spacing 
(miles) 

Error (mph) 

1 EnKF 
Radar 
(7/8) 

13 Spatial 
Radar 
(7/8) 

18 

2 EnKF 
Radar 
(3/8) 

10 Spatial 
Radar 
(3/8) 

12 

 

Lowest cost SWZ within specified error target 

Error target 
(mph) 

Lowest cost SWZ Lowest cost SWZ excluding EnKF 

Algorith
m 

Sensor 
spacing 
(miles) 

Cost 
($k/month

/mile) 
Algorithm 

Sensor 
spacing 
(miles) 

Cost 
($k/month

/mile) 

10 EnKF 
Radar 
(3/8) 

2 Spatial 
Radar 
(1/4) 

2.9 

15 EnKF 
Radar 
(1.25) 

0.7 Spatial 
Radar 
(1/2) 

1.5 

20 EnKF 
Radar 
 (2.5) 

0.4 Spatial 
Radar 
(1.0) 

0.8 
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Table 6.2 summarizes the recommended smart work zone configurations and algorithms 
for queue length estimation. Due to the lower cost of radar sensors, the best-performing 
or lowest-cost smart work zone systems are dominated by radar sensors. This also 
suggests lower-cost sensors are preferable.  

Table 6.2: Best Smart Work Zone Deployments for Queue Length Estimation 

Queue 
length 

estimation 

Best SWZ within specified budget 

Budget 
($k/month 

/mile) 

Best SWZ Best SWZ excluding EnKF 

Algorithm 
Sensor 
spacing 
(miles) 

Error (mile) Algorithm 
Sensor 
spacing 
(miles) 

Error 
(mile) 

0.5 EnKF 
Radar 
(2.5) 

0.26 Spatial 
Radar 
(2.5) 

0.57 

1 EnKF 
Radar 
(7/8) 

0.13 Spatial 
Radar 
(7/8) 

0.18 

1.5 EnKF 
Radar 
(1/2) 

0.1 Spatial 
Radar 
(1/2) 

0.16 

2 EnKF 
Radar 
(3/8) 

0.06 Spatial 
Radar 
(3/8) 

0.13 

 

Lowest cost SWZ within specified error target 

Error target 
(miles) 

Lowest cost SWZ Lowest cost SWZ excluding EnKF 

Algorith
m 

Sensor 
spacing 
(miles) 

Cost 
($k/month 

/mile) 
Algorithm 

Sensor 
spacing 
(miles) 

Cost 
($k/month 

/mile) 

0.1 EnKF 
Radar 
(1/2) 

1.5 Spatial 
Radar 
(1/8) 

5.7 

0.2 EnKF 
Radar 
(1.25) 

0.7 Spatial 
Radar 
(7/8) 

1 

0.3 EnKF 
Radar 
(2.5) 

0.4 Spatial 
Radar 
(1.25) 

0.5 
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Table 6.3 summarizes the recommended smart work zone deployments for travel time 
estimation based on microsimulation. The combination of radar sensors and EnKF 
generally provides the best performance. When excluding EnKF, the spatio-temporal 
filtering algorithm performs best combined with RTMS. The reason that RTMS is more 
favorable is because the travel time estimation is very sensitive to the traffic speed 
estimation in congested traffic, and radar sensors have difficulty in reliably measuring slow 
traffic.  

Table 6.3: Best Smart Work Zone Deployments for Travel Time Estimation 

Travel 
time 

estimation 

Best SWZ within specified budget 

Budget 
($k/month

/mile) 

Best SWZ Best SWZ excluding EnKF 

Algorithm 
Sensor 
spacing 
(miles) 

Error (min) Algorithm 
Sensor 
spacing 
(miles) 

Error (min) 

0.5 EnKF 
Radar 
(2.5) 

7.3 
Spatio-

temporal 
RTMS 
(5.0) 

9.6 

1 EnKF 
Radar 
(7/8) 

5.5 
Spatio-

temporal 
RTMS 
(1.25) 

7.2 

1.5 EnKF 
Radar 
(3/4) 

4.8 
Spatio-

temporal 
RTMS 
(1.0) 

7 

2 EnKF 
Radar 
(3/4) 

4.8 
Spatio-

temporal 
RTMS 
(1.0) 

7 

       

Lowest cost SWZ within specified error target 

Error 
target 
(min) 

Lowest cost SWZ Lowest cost SWZ excluding EnKF 

Algorithm 
Sensor 
spacing 
(miles) 

Cost 
($k/month 

/mile) 
Algorithm 

Sensor 
spacing 
(miles) 

Cost 
($k/month

/mile) 

5 EnKF 
Radar 
(3/4) 

1.1 N/A N/A N/A 

7.5 EnKF 
Radar 
(2.5) 

0.42 
Spatio-

temporal 
RTMS 
(1.25) 

1 

10 
Spatio-

temporal 
RTMS 
(5.0) 

0.4 
Spatio-

temporal 
RTMS 
(5.0) 

0.4 

 

The main limitation of the study is that the analysis was conducted in a microsimulation environment. 
Further field testing is needed to validate the findings. Furthermore, the present analysis was 
restricted to the accuracy of the traffic state estimate only, and it did not consider other practical 
factors such as maintenance and redeployment costs, which may also play a critical role in the 
development of practical sensor network configuration guidelines. 
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APPENDIX A: CALIBRATION PROCEDURE 

A.1 SENSITIVITY ANALYSIS 

Sensitivity analysis is a method for determining the influence of each factor to the system response. 
Ideally, an analysis of variance (ANOVA) [118] should be performed to obtain statistical significance of 
each factor and the interaction between factors. However, a full factorial ANOVA requires a large number 
of simulations. For example, the ANOVA of 12 factors with four levels of values each would require 412 = 
16,777,216 simulations, which takes 5.3 years to complete assuming each simulation takes 10 seconds. 

An alternative approach is to infer the sensitivity by investigating one factor at a time while keeping 
other factors fixed at the default value using X-Y plots [58]. The underlying assumption is that factors 
are independent in terms of influencing the response. Though this assumption is not well justified, it 
provides a faster way to infer the sensitivity of factors. 

A comprehensive parameter sensitivity analysis in AIMSUN has been previously conducted [73]. 
Initially, 32 parameters were selected and then reduced to eight parameters based on engineering 
and empirical knowledge. The sensitivity analysis showed four out of the eight parameters explained 
more than 95% of the output variance, including the reaction time, speed acceptance, maximum 
acceleration, and the coefficient of variance. 

This study followed the previously cited selection [73] and an initial set of six parameters were 
selected for each type of vehicle for the sensitivity analysis: 

 reactionTime. This is the time for a driver to react to speed changes of the preceding vehicle. In 
AIMSUN, the reaction time is required to be multiplications of the simulation step. In the analysis 
of this parameter, to obtain a finer resolution, the simulation step was modified to 0.2 seconds. 

 speedAcceptance. The speed acceptance determines the speed of the vehicle. In AIMSUN 
simulation, the speed acceptance of vehicle is a stochastic parameter determined by four 
values [mean, std, min, max]. The speedAcceptance parameter analyzed refers to the mean 
value. In AIMSUN, the vehicle speed is also determined by another parameter 
maxDesiredSpeed. To allow maximum flexibility for adjusting speedAcceptance, the parameter 
maxdesiredSpeed should be set at a high value as suggested in [73]. 

 maxAccel. This parameter influences the maximum acceleration rate of vehicles. In AIMSUN, 
the maximum acceleration rate of vehicles is a stochastic parameter determined by four 
values defining a random distribution [mean, std, min, max]. The parameter maxAccel refers 
to the mean value. 

 minDist. This parameter influences the minimum stopping distance of vehicle. In AIMSUN, the 
minimum distance is a stochastic parameter determined by [mean, std, min, max]. The 
parameter minDist refers to the mean value. This parameter was neglected in [73] where the 
minimum distance was directly measured in field. However, the minimum distance is not 
available in the data for this study. Therefore, the minDist is included in the set of parameters 
for a sensitivity analysis. 

 cov. This parameter represents the coefficient of variance (the standard deviation divided by 
the mean) for the stochastic parameters (i.e., speedAcceptanc, maxAcce, minDist). Assuming 
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that the distributions of parameters of each type of vehicle are approximately the same [73], 
the standard deviation for the stochastic parameters can be determined the multiplication of 
cov with the corresponding mean values. 

 sensitivityFactor. In the deceleration component of the car-following model, the follower 
makes an estimation of the deceleration of the leader using the sensitivity factor. If the 
parameter sensitivityFactor is lower or higher than 1, then the vehicle underestimates or 
overestimates the deceleration rate of the leading vehicle, hence driving more or less 
aggressively. This parameter was found to be very influential in terms of changing the traffic 
behavior, hence included in the initial parameter set. This parameter is assumed to be 
deterministic. 

In this study, the sensitivity analysis was performed on a synthetic highway (approximately one mile). 
Four detectors were evenly spaced on the road measuring the speeds, and the traffic demand was 
specified such that a queue propagates upstream. The total simulated time horizon is 40 minutes. 

Table A.1: Initial Parameters for Sensitivity Analysis 

Parameters Default value Range 

car speedAcceptance 1.1 [0.85, 1.3] 

truck speedAcceptance 1.05 [0.85, 1.1] 
car maxAccel (m/s2) 3 [2.6, 3.4] 
truck maxAccel (m/s2) 1 [0.6, 1.8] 

car minDist (m) 1 [0.5, 1.5] 
truck minDist (m) 1.5 [1.0, 2.5] 
car sensitivityFactor 1 [0.5, 1.5] 
truck sensitivityFactor 1 [0.5, 1.5] 
car reactionTime (s) 0.8 {0.4, 0.6, . . . , 2.0} 

truck reactionTime (s) 0.8 {0.4, 0.6, . . . , 2.0} 
car cov 0.3 [0.1, 0.5] 
truck cov 0.33 [0.1, 0.5] 

 

Prior to the sensitivity analysis for the parameters specified in Table A.1, the following configurations 
were conducted in AIMSUN. 

 All other parameters in the AIMSUN were left as default, except that the desired speeds for 
the cars and trucks are set at a high value [105, 6.2, 100, 112] mph to allow maximum 
flexibility of adjusting speedAcceptance. 

 The detection interval for all detectors was configured as 5 minutes. 

 The simulation step was configured as 0.2 seconds. 

 The generation of vehicles was set as const; hence, vehicles were generated exactly as 
specified in the traffic demand. 

The procedure of the sensitivity analysis is briefly summarized as follows: 
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 With all other parameters fixed, change the value of the parameter under analysis, and 
simulate the new set of parameters in AIMSUN. 

 For each set of parameters, run ten simulations and obtain the corresponding responses. 
Using ten simulations allows us to see the influence level of each parameter compared to 
stochastic errors. In addition, within each simulation, ten replications with random seeds were 
simulated to compute the average response. 

 Use the simulated speed data to compute the root mean square error (RMSE) against the 
speed data generated using default parameter values. 

 Visualize the response (RMSE of speed) versus the levels of values for each parameter, and 
identify the parameters that are sensitive. 

The sensitivity analysis results are visualized in Figure A.1, Figure A.2, and Figure A.3. 

In Figure A.1, clearly, the car speedAcceptance and the truck maxAccel are both very sensitive, while 
the car maxAccel is not sensitive at all. The truck speedAcceptance is mildly sensitive. However, the 
stochastic error is relatively large and this parameter is not included the final calibration parameters. 

In Figure A.2, the car sensitivityFactor and the truck sensitivityFactor both exhibit high sensitivity. In 
comparison, the car minDist and the truck minDist both show mild sensitivity, and are not included 
in the final calibration parameters. 

In Figure A.3, the reactionTime parameters for both types of vehicles are sensitive when the value is 
below 1.6. Therefore, the car reactionTime and truck reactionTime are included in the final 
calibration parameters, with levels of value {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} seconds. 

In summary, based on the sensitivity analysis of 12 initial parameters, six parameters were identified 
as sensitive which were included in the final set of parameters to be calibrated in Table A.2. In 
addition, it was later identified during this study that the minimum headway was also an influential 
parameter. Therefore, the minimum headways of cars and trucks were included in the actual 
calibration of two work zones. 

Table A.2: Parameters for Calibration 

Parameter Default value Range 

car speedAcceptance 1.1 [0.85, 1.3] 

truck maxAccel (m/s2) 1 [0.6, 1.8] 

car sensitivityFactor 1 [0.5, 1.5] 
truck sensitivityFactor 1 [0.5, 1.5] 
car reactionTime (s) 0.8 {0.4, 0.6, . . . , 1.6} 

truck reactionTime (s) 0.8 {0.4, 0.6, . . . , 1.6} 

car minHeadway (s) 0 {1.0, 1.5, 2.0, 2.5} 

truck minHeadway (s) 0 {1.0, 1.5, 2.0, 2.5} 
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Figure A.1: Sensitivity analysis of speedAcceptance and maxAccel. 
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Figure A.2: Sensitivity analysis of minDist and sensitivityFactor. 
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Figure A.3: Sensitivity analysis of reactionTime and cov. 

A.2 VERIFICATION OF AUTO CALIBRATION FRAMEWORK 

This study proposed to calibrate the micro simulation model parameters (Table A.2) using an 
automated calibration framework. To validate the feasibility of the proposed approach, a verification 
of the framework was conducted.  

A synthetic highway section (approximately 1 mile) was modeled with four detectors evenly spaced 
on the road. A set of true values were configured for the parameters for generating the true traffic 
data. The true traffic data mimics the field data collected in the field and is required in the 
computation of the measure of fit. The auto calibration framework proposed in Section 3.4.2 was 
applied to the synthetic highway section to recover the true values.  

Considering the complexity and nonlinearity of the calibration problem, the optimization program 
NOMAD was configured with the following features activated: 

 Latin hypercube sampling. This feature allows maximum coverage of the search space. 

 The variable neighborhood search parameter is activated and configured at its maximum 
value 0.99. This feature enables searching in the neighborhood to avoid being trapped in a 
local minimum. 
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 Integer programming. All parameters to be calibrated were assumed to have a granularity 0.1 
or higher. Hence the integer programming feature was activated to avoid unnecessary 
evaluation of parameters with finer resolution. 

After in total 1536 iterations, the optimal values of parameters were summarized in Table A.3 and the 
visualized in Figure A.4. Though the optimal parameters did not recover the true parameters, the 
speed RMSE is improved from the simulation using the default parameters by 89.7%. Moreover, the 
speed RMSE using optimal values was 5.15 which was on the same level of error introduced by the 
stochasticity in the simulation. 

Table A.3: Calibration Results for the Synthetic Model 

Parameter True value Default value Optimal value Error 

car speedAcceptance 1.08 1.1 1.29 19% 

truck maxAccel (m/s2) 0.9 1.0 1.18 31% 

car sensitivityFactor 0.95 1.0 0.88 7.3% 
truck sensitivityFactor 1.03 1.0 1.1 6.8% 
car reactionTime (s) 0.8 0.8 1.0 25% 
truck reactionTime (s) 1.2 0.8 1.0 16.7% 

speed RMSE 0 49.77 5.15 89.7%∗
 

                 *: Improvement over default values 

 

 

Figure A.4: Calibration result for the synthetic model. 
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Considering the high nonlinearity of the optimization problem, the parameters are correlated and the 
combined effect of different values can be comparable. For example, the autocalibration program 
overestimates truck maxAccel and underestimates truck reactionTime which combined can 
produce similar acceleration and deceleration characteristics in congested traffic. Therefore, the auto 
calibration framework was concluded as a valid solution for calibrating the parameters in this study. 
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APPENDIX B: DATA QUALITY ANALYSIS 

B.1 METHODOLOGY 

This section presents the procedures and data quality metric used for analyzing the dataset. 

B.1.1 Metric for Data Incompleteness 

The percentage of missing speed data for sensor 𝑖 denoted 𝑚𝑣𝑖
 is calculated over 𝑛 consecutive 

measurement intervals as follows:  

𝑚𝑣𝑖
=

1

𝑛
∑ 𝜒(𝑣𝑖 (𝑡))

𝑛

𝑡=0

, 

where 

𝜒(𝑣𝑖(𝑡)) = { 
0          if the measurement 𝑣𝑖(𝑡) is missing
1          otherwise,

  

 
is an indicator function that returns one (1) when the speed data 𝑣𝑖(𝑡) of sensor 𝑖 during time 
interval 𝑡, is recorded, and zero (0) when the data is missing. The percentage of missing count data is 
computed similarly. 

For each work zone, the missing data is computed over four time intervals as defined above (i.e., the 
entire month, the peak hours over the entire month, the estimated congested hours and a typical 
free-flow period). These intervals are selected to understand when the missing data occurs and how 
it is distributed throughout the day and month. It emphasizes that missing data during peak or 
congested traffic may be more important from a safety perspective than missing data spread 
intermittently throughout the month.  

B.1.2 Metric for Data Inconsistency 

The mean absolute percent change between the count readings of sensors 𝑖 and 𝑖 + 1, denoted Δ𝑚𝑐, 
is calculated over 𝑛 consecutive measurement intervals as follows: 

Δ𝑚𝑐 =
100

𝑛
∑

|𝑐𝑖+1(𝑡) − 𝑐𝑖(𝑡)|

𝑐𝑖(𝑡)
,

𝑛

𝑡=0

 

where 𝑐𝑖+1(𝑡) and 𝑐𝑖(𝑡) are the count measurements of sensor 𝑖 + 1 and 𝑖 respectively, during time 
interval 𝑡. The mean absolute percent change between the speed readings is computed similarly. If 
the count measurements of either sensor 𝑖 or 𝑖 + 1 are missing at time 𝑡, the timestamp is not 
included in the calculation of the mean absolute percent change. The value 𝑛 is taken as the number 
of intervals where the measurements are not missing. 

This procedure is applied on pairs of sensors that are close in distance (e.g., less than 1 mile spacing) 
with no significant geometric changes (e.g., lane drops, entrance or exit ramps). In free-flow traffic, 
the average speed and count measurements should be approximately the same from these sensor 
pairs. The inconsistency analysis is performed over (1) the entire month of interest and (2) a typical 
free-flow interval. Large discrepancies between sensor pairs are likely due to sensor measurement 
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errors and not due to traffic dynamics such as a congestion wave, which occur on faster timescales 
than the data aggregation.  

B.2 SMART WORK ZONE DATA QUALITY REPORT 

This section presents the report titled Smart Work Zone Data Quality Report (ICT R27-155), which was 
submitted to IDOT and forwarded to the vendor Ver-Mac. Additional information was provided by 
Ver-Mac after the submission of the report. Please refer to the main body of the report for the 
updated analysis and findings.  

Smart Work Zone Data Quality Report (ICT R27-155) 

Juan Carlos Martinez Mori, Yanning Li, and Prof. Daniel Work1 

Department of Civil and Environmental Engineering 

University of Illinois at Urbana Champaign 

December 26, 2015 

1. Introduction 

This report documents the data analysis for ICT project R27-155, “Improving the Effectiveness of Smart 

Work Zone Technologies.” The project goal is to evaluate the effectiveness of smart work zone technologies 

by assessing the performance of different sensor network configurations in a microscopic traffic simulation 

software. The micro simulation software was used to model and calibrate two work zones on I-57/I-64 and I-

80 using field data obtained from the Ver-Mac traffic management system deployed on each site.  

This brief report summarizes a set of preliminary findings on the data quality of the two Illinois work zones 

studied in the R27-155 project. It reports on two data quality measures, namely missing data percentages and 

sensor measurement inconsistencies for the data examined in the project. The main finding is that data streams 

examined from both work zones contain significant missing and inconsistent data which increased the 

difficulty of the micro simulation calibration in project R27-155. We would like to share the preliminary 

findings with IDOT & Ver-Mac to allow further investigation into their potential causes. We welcome 

questions and feedback on the contents of this report. 

2. Data Description 

The following work zones were investigated in this study: 

1. I-57/I-64: IDOT Contract No. 78276, in Jefferson County, IL. In total, 25 sensors were deployed on 

the work zone site, including 22 radar sensors and three remote traffic microwave sensors (RTMS). 

2. I-80: IDOT Contract No. 60Y64, in Will County, IL. In total, 30 sensors were deployed on the work 

zone site, including 18 radar sensors and 12 RTMS. 

The data quality analysis performed on the data is limited to the time and sensors of interest for simulation in 

the R27-155 project. Specifically, we limited the analysis to the following: 

 Southbound/eastbound direction of the I-57/I-64 work zone between November 1, 2014 and November 

30, 2014. This dataset is of interest for modeling due to the occurrence of severe congestion, and the 

simplicity of the work zone geometry during this stage of construction. For the data quality 

assessment, we considered the data from: 

                                                           
1 Corresponding author. email: dbwork@illinois.edu 
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i. The entire month of November 2014. 

ii. An estimated peak hour between 1630 and 1730 hours (4:30-5:30 p.m.) for the entire month 

of November 2014, based on visual inspection of the speed data patterns from the RTMS. 

iii. Three time intervals with apparent congestion (i.e., November 26 from 1600 to 1800 hours, 

November 26 from 2100 to 2300 hours, and November 16 from 1700 to 1830 hours), based 

on visual inspection of the speed data patterns. 

iv. A typical free-flow time interval (November 18, 2014 from 0600 to 1100 hours). 

 

 Eastbound direction of the I-80 work zone between May 1, 2015 and May 31, 2015. This dataset was 

selected for modeling due to the availability of the data (micro simulation modeling of this work zone 

began in June 2015) and the relative simplicity of the network geometry. For the data quality 

assessment, we considered the data from: 

i. The entire month of May 2015. 

ii. An estimated peak hour between 0700 and 0800 hours. for the entire month of May 2015, 

based on visual inspection of the speed data patterns. 

iii. Three time intervals with apparent congestion (May 1 from 1530 to 1800 hours, May 3 from 

1100 to 1630 hours, and May 7 from 0700 to 1630 hours), based on visual inspection of the 

speed data patterns. 

iv. A typical free-flow time interval (May 1, 2015 from 1300 to 1530 hours). 

The data from each work zone was accessed through JamLogic, developed by Ver-Mac. It includes the speed 

and count data aggregated in five-minute intervals. 

3. Methodology  

This section presents the procedures and data quality metric used for analyzing the dataset.   

3.1 Metric for Data Incompleteness  

The percentage of missing speed data for sensor 𝑖 denoted 𝑚𝑣𝑖
 is calculated over 𝑛 consecutive measurement 

intervals as follows:  

 

𝑚𝑣𝑖
=

1

𝑛
∑ 𝜒(𝑣𝑖 (𝑡))

𝑛

𝑡=0

, 

where 

𝜒(𝑣𝑖(𝑡)) = { 
0          if the measurement 𝑣𝑖(𝑡) is missing
1          otherwise,

  

 

is an indicator function that returns one (1) when the speed data 𝑣𝑖(𝑡) of sensor 𝑖 during time interval 𝑡, is 

recorded, and zero (0) when the data is missing. The percentage of missing count data is computed similarly. 

For each work zone, the missing data is computed over four time intervals as defined above (i.e., the entire 

month, the peak hours over the entire month, the estimated congested hours and a typical free-flow period). 

These intervals are selected to understand when the missing data occurs and how it is distributed throughout 

the day and month. It emphasizes that missing data during peak or congested traffic may be more important 

from a safety perspective than missing data spread intermittently throughout the month.  
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3.2 Metric for Data Inconsistency  

The mean absolute percent change between the count readings of sensors 𝑖  and 𝑖 + 1 , denoted Δ𝑚𝑐 , is 

calculated over 𝑛 consecutive measurement intervals as follows: 

Δ𝑚𝑐 =
100

𝑛
∑

|𝑐𝑖+1(𝑡) − 𝑐𝑖(𝑡)|

𝑐𝑖(𝑡)
,

𝑛

𝑡=0

 

where 𝑐𝑖+1(𝑡) and 𝑐𝑖(𝑡) are the count measurements of sensor 𝑖 + 1 and 𝑖, respectively, during time interval 

𝑡 . The mean absolute percent change between the speed readings is computed similarly.  If the count 

measurements of either sensor 𝑖 or 𝑖 + 1 are missing at time 𝑡, the timestamp is not included in the calculation 

of the mean absolute percent change. The value 𝑛 is taken as the number of intervals where the measurements 

are not missing. 

This procedure is applied on pairs of sensors that are close in distance (e.g., less than 1 mile spacing) with no 

significant geometric changes (e.g., a lane drop, entrance or exit ramps). In free-flow traffic, the average speed 

and count measurements should be approximately the same from these sensor pairs. The inconsistency 

analysis is performed over (1) the entire month of interest and (2) a typical free-flow interval. Large 

discrepancies between sensor pairs are likely due to sensor measurement errors and not due to traffic dynamics 

such as a congestion wave, which occur on faster timescales than the data aggregation.  

4. Findings 

This section presents the numerical results of the data quality assessment procedures performed on the datasets 

in each of the work zones. The findings are organized by work zone. RTMS are denoted with the symbol ‘*’ 

after the sensor ID. 

4.1 I-57/I-64 

The data completeness findings for all of the sensors in the direction and the time intervals presented in the 

Data Description (Section 2) are presented in Table 1.  

Table 1: November 2014 Southbound/Eastbound Percent Missing Data 

Sensor 
Entire Period Peak Hour  Congested Intervals Free-Flow Interval 

Speed Count Speed Count Speed Count Speed Count 

SB1 1.33% 1.20% 1.54% 0.77% 10.67% 0.00% 1.64% 1.64% 

SB2 1.15% 0.75% 3.59% 0.26% 44.00% 0.00% 0.00% 0.00% 

SB3 0.83% 0.44% 3.59% 0.26% 33.00% 0.00% 0.00% 0.00% 

SB4 0.54% 0.38% 1.79% 0.26% 16.00% 0.00% 0.00% 0.00% 

SB5 7.14% 6.91% 10.51% 8.72% 21.33% 0.00% 0.00% 0.00% 

SB6 3.68% 3.02% 7.18% 3.85% 58.67% 0.00% 0.00% 0.00% 

SB7* 5.19% 5.00% 7.18% 7.18% 0.00% 0.00% 0.00% 0.00% 

SB8 1.52% 1.01% 4.36% 1.03% 49.33% 0.00% 0.00% 0.00% 

SB9 0.31% 0.08% 2.82% 0.00% 25.33% 0.00% 0.00% 0.00% 

Average 2.41% 2.09% 4.73% 2.48% 28.74% 0.00% 0.18% 0.18% 

       Note: The symbol ‘*’ denotes an RTMS. 
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Note the following observations: 

 The low percentages of data missing during the typical free-flow interval suggest that the dataset is 

largely complete when the traffic is in free-flow. 

 On average, the radar sensors have a 10-fold increase in the missing speed data percentages during 

congested periods compared to the monthly average. 

 The percentage of missing speed data during congestion is significantly higher than the percentage of 

missing count data during the same time interval. This may be explained by the way the sensors work; 

if a speed is not recorded, the vehicle count is set to zero (0), which is regarded as not missing. 

 The RTMS does not have any missing speed or count records during the congested intervals but has 

higher than average missing data percentages over the entire month compared to the radar sensors. 

As reported on JamLogic, SB7* had low battery and communication timeout issues between 

November 1 and November 4, which resulted in missing 34.98% of the speed data and 34.38% of the 

count data. 

Given the high percentage of missing radar data during the congested time intervals, the speed and count data 

from sensors SB1, SB7*, and SB9 are plotted for November 26, 2014, from 1200 to 1900 hours in Figure 1.  

 

It was observed that the radar speed information drops out around 1600 hours, while the vehicle counts drop 

to zero (0). The speed data is recorded again around 1700 hours, and the vehicle counts become nonzero.  

The results of the inconsistency assessment between samples of neighboring sensors for the direction and time 

intervals shown in the Data Description section are presented in Tables 2 and 3. The notation 𝑖 → 𝑖 + 1 refers 

to the data percent change from sensor 𝑖 to 𝑖 + 1. 

  

Figure 1: Radar sensors (SB1, SB9) present abnormal readings as traffic congestion starts 

b) Vehicle count (veh/ 5 min) drops near zero 

in radar sensors. 
a) Vehicle speeds are missing from radar 

sensors. 
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Note the following observations: 

 The count inconsistencies between sensor pairs are large regardless of the sensor type, both averaged 

over the entire month and averaged over a typical free-flow time interval. 

 The inconsistency of speed readings between radar and RTMS pairs is relatively large compared to 

that of radar – radar sensor pairs. 

 

4.2 I-80 

The data completeness findings for the I-80 sensors in the direction and time intervals presented in the Data 

Description section are summarized in Table 4. 

Table 4: May 2015 Eastbound Percent Missing Data 

Sensor 
Entire Period Peak Hours  Congested Intervals Free-Flow Interval 

Speed Count Speed Count Speed Count Speed Count 

EB3 0.41% 0.41% 0.99% 0.99% 1.99% 1.99% 0.00% 0.00% 

EB4 0.44% 0.44% 1.49% 1.49% 3.28% 3.28% 0.00% 0.00% 

EB5* 0.27% 0.27% 1.24% 1.24% 2.99% 2.99% 0.00% 0.00% 

EB6 0.53% 0.53% 1.49% 1.49% 2.99% 2.99% 0.00% 0.00% 

EB7* 0.24% 0.24% 0.74% 0.74% 2.99% 2.99% 0.00% 0.00% 

EB8 0.46% 0.46% 2.23% 2.23% 6.47% 6.47% 0.00% 0.00% 

EB9* 27.40% 27.40% 30.27% 30.27% 34.83% 34.83% 0.00% 0.00% 

EB10 0.52% 0.52% 1.74% 1.74% 10.45% 10.45% 0.00% 0.00% 

EB11 0.84% 100.00% 3.23% 100.00% 0.00% 100.00% 0.00% 100.00% 

EB12* 4.84% 4.84% 7.69% 7.69% 2.99% 2.99% 0.00% 0.00% 

EB14 0.85% 0.85% 1.99% 1.99% 15.92% 15.92% 0.00% 0.00% 

EB15 0.74% 0.74% 1.24% 1.24% 16.92% 16.92% 0.00% 0.00% 

EB16 0.75% 0.75% 1.24% 1.24% 19.90% 19.90% 0.00% 0.00% 

Average  2.95% 10.57% 4.28% 11.72% 9.36% 17.05% 0.00% 7.69% 

Average 
Excluding 

EB9* & EB11 
0.91% 0.91% 2.01% 2.01% 7.90% 7.90% 0.00% 0.00% 

          Note: The symbol ‘*’ denotes an RTMS. 

 

Note the following observations: 

 EB9* has a large number of missing speed and count records, while EB11 did not report any count 

data over the time period investigated A possible explanation for the issues with EB9* is the 

multiple communication timeouts during May 2015, as reported by JamLogic. 

Table 2: November 2014  

Data Percent Change 

 Table 3: November 18, 2014 (0600- 

1100 hr) Data Percent Change 

Sensor Pair 
Percent Change  

Sensor Pair 
Percent Change 

Speed Count  Speed Count 

SB5→SB6 1.64% 23.49%  SB5→SB6 1.19% 28.39% 

SB6→SB7* 12.45% 39.64%  SB6→SB7* 10.38% 27.94% 

SB7*→SB8 10.06% 39.37%  SB7*→SB8 5.26% 24.24% 

SB8→SB9 6.06% 46.15%  SB8→SB9 6.93% 19.85% 

  Note: The symbol ‘*’ denotes an RTMS. 
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 During the congested intervals, EB10, EB14, EB15, and EB16 each have data incompleteness 

percentages above 10%, but lower data incompleteness percentages when averaged over the entire 

month. 

 RTMS EB12* appears to have an intermittent data completeness problem, since the percentages of 

missing data are highest averaged over the entire month, but lower for any other interval 

investigated. 

 Sensors EB16 through EB8 experienced significant issues during the congestion intervals. Sensors 

EB7 through EB3 produced more complete datasets, possibly because the queue did not extend to 

their location. 

 Overall, the sensors performed better during the free-flow intervals compared to the congested 

periods. 

The quantitative data inconsistency results between sample pairs of sensors on I-80 for all of May 2015 and 

a typical free-flow interval are shown in Table 5 and Table 6, respectively. 

Note: The symbol ‘*’ denotes an RTMS. 

 

This information can be better understood by observing Figure 2, which plots the data of the typical free-

flow interval selected for the quantitative analysis. 

 

  

Table 5: May 2015  

Data Percent Change 

  Table 6: May 1, 2015 (1300-1530 hr) 

 Data Percent Change 

Sensor Pair 
Percent Change   

Sensor Pair 
Percent Change 

Speed Count   Speed Count 

EB4→EB5* 17.08% 73.79%   EB4→EB5* 16.31% 79.85% 

EB4→EB6 3.12% 22.58%   EB4→EB6 1.73% 10.35% 

EB8→EB9* 14.23% 84.49%   EB8→EB9* 10.81% 93.73% 

EB8→EB10 8.29% 26.35%   EB8→EB10 6.93% 13.68% 

b) Inconsistent average vehicle count (veh/5 

min) min). 
a) Inconsistent average vehicle speed. 

Figure 2: Inconsistency between sensors EB4 and EB6 (radar) and EB5* (RTMS) during free flow. 
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Note the following observations: 

 As seen in Table 5, Table 6 and Figure 2, the RTMS report higher speeds and count measurements 

than the radar sensors. 

 The largest inconsistencies for speeds (10-17%) and counts (73-93%) occur between RTMS and 

radar sensors. Lower discrepancies are observed between radar sensors. 

 

5. Conclusions 

This report documents the data analysis procedures and findings for the Ver-Mac data collected in two work 

zones. The conclusions include: 

1. Data incompleteness and inconsistency issues are common in field data, especially if collected in complex 

environments such as work zones. Data quality issues were found in both work zones. 

2. The I-57/I-64 work zone had severe data incompleteness issues (28% missing) during the congested 

intervals investigated due to the relatively poor performance of the radar sensors compared to the single 

RTMS. The I-80 work zone had a lower missing data percentages during congestion, although high 

missing data percentages were observed on two sensors (EB9* and EB11).  

3. Both work zones exhibit data consistency issues, with the I-80 work zone having the largest disagreement 

between neighboring sensors. Inconsistencies were largest between RTMS and radar sensor pairs, where 

speed and count errors exceeded 10% and 70%, respectively, on the I-80 work zone. 

4. These results/conclusions are limited in scope. A more complete analysis of all of the sensors in each 

work zone throughout the entire duration of each sensor deployment may provide additional insights. To 

aid additional analysis, the Python code used to generate the results shown in this report is available at 

https://github.com/Lab-Work/sensor_quality.  

 

  

https://github.com/Lab-Work/sensor_quality
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APPENDIX C: IMPLEMENTATION OF ALGORITHMS 

C.1 IMPLEMENTATION OF THE SPATIO-TEMPORAL FILTERING ALGORITHM 

It has been shown that that estimating the pace of traffic (i.e., the inverse speed), 𝑝(𝑡, 𝑥) =
1/𝑣(𝑡, 𝑥), rather than the velocity, is necessary to avoid the structural bias in the travel times 
constructed from the velocity field estimated by the spatio-temporal method [81]. The pace estimate 
�̂�(𝑡, 𝑥) at time 𝑡 and space 𝑥 is as follows: 

        (1)  

which is a convex combination of two pace estimates 𝑝𝑓𝑟𝑒𝑒 and 𝑝𝑐𝑜𝑛𝑔 weighted by 𝛾(𝑡, 𝑥). The free-
flow and congested pace estimates are computed by averaging a set of measurements 𝑀(𝑡, 𝑥) in the 
neighborhood of (𝑡, 𝑥) along the free-flow and congested wave speeds of traffic flow, respectively, 
given by kinematic wave theory [90, 91]. To generate real-time estimates required in work zone 
applications, the measurement set 𝑀 (𝑡, 𝑥) includes only measurements obtained up to time 𝑡. 

Let 𝑝𝑚  =  1/�̃�𝑚 denote the corresponding pace of a velocity measurement obtained at (𝑡𝑚, 𝑥𝑚). The 
congested pace 𝑝𝑐𝑜𝑛𝑔 is a weighted average of the measurements 𝑀(𝑡, 𝑥): 

 (2) 

The weight of each measurement is computed with a decaying exponential aligned with maximum 
congested wave speed 𝑤: 

   (3) 

where 𝜅 and 𝜁 are parameters to control the decay rates. The free-flow pace estimate 𝑝𝑓𝑟𝑒𝑒 traffic is 
obtained similarly, with the modification that traffic is smoothed along the free-flow wave speed 𝑣𝑚𝑎𝑥 

instead of the congested wave speed 𝑤. 

The weighting coefficient 𝛾 (𝑡, 𝑥) is defined as follows: 

   (4) 

In (4), 𝑣𝑐 is the critical velocity (i.e., where traffic transitions from free flowing to congested), ∆𝑉 is a 
smoothing width for the traffic state transition, and 𝑢(𝑡, 𝑥) is given as follows: 

   (5) 

The purpose of 𝑢
 
(𝑡, 𝑥) is to determine whether 𝑝𝑐𝑜𝑛𝑔 or 𝑝𝑓𝑟𝑒𝑒 indicates that traffic conditions are 

congested. As a result, Equation 4 produces coefficients that favor the congested estimate when 
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either 𝑝𝑐𝑜𝑛𝑔 or 𝑝𝑓𝑟𝑒𝑒 indicate congestion (i.e., 𝛾(𝑡, 𝑥)  →  1), and favors the free-flow estimate 
otherwise. 

A final step to recover the velocity estimate is to invert the resulting pace estimate 𝑣(𝑡, 𝑥) =
 1/�̂�(𝑡, 𝑥). 

For the I-80 work zone, the parameters of the spatio-temporal algorithm 𝑤, 𝑣𝑚𝑎𝑥 and 𝑣𝑐 were set 
according to the calibrated fundamental diagram C.1, respectively 𝑤 =  −9.29 mph, 𝑣𝑚𝑎𝑥 =
60.82 mph, and 𝑣𝑐 = 56.52 mph. 

For the I-57 work zone, the parameters of the spatio-temporal algorithm 𝑤, 𝑣𝑚𝑎𝑥 and 𝑣𝑐 were set 
according to the calibrated fundamental diagram C.2, respectively 𝑤 =  −10.92 mph, 𝑣𝑚𝑎𝑥 =  52.71 
mph, and 𝑣𝑐  =  47.84 mph. 

The additional parameter ∆𝑉 is set to 12.43 mph as in [87, 89]. The decay rate controllers 𝜅 and 𝜁 are 
fixed at 0.75 times the sensor spacing and sensor aggregation, respectively, based on an optimization 
procedure that evaluated the performance of multiple combinations of values that fell in the ranges 
recommended in [89]. To avoid using excessively old measurements and unnecessarily long 
computation times, the measurements older than 2.5 minutes are ignored. 

C.2 IMPLEMENTATION OF THE ENSEMBLE KALMAN FILTER ALGORITHM 

Evolution Equation 

The traffic dynamics on a road segment is governed by the Lighthill-Whitham-Richards (LWR) partial 
differential equation (PDE) [90, 91], which expresses conservation of vehicles on the roadway: 

    (6) 

where 𝜓(𝜌)  =  𝜌𝑉(𝜌) is the fundamental diagram describing the relationship between the density 
and flow on a highway. The model is closed by assuming an empirical relationship between the 
velocity and density of traffic, defined by the velocity function 𝒱. In this work, the following velocity 
function is used: 

    (7) 

where the parameter 𝑣𝑚𝑎𝑥 is the maximum free-flow velocity, 𝛽 controls the slope of the velocity 
function in free flow, 𝜌𝑐 and 𝜌𝑚𝑎𝑥 are the critical and jam density, and 𝑤 is the maximum backward 
wave speed. 

The LWR PDE is discretized using the Godunov scheme [106], resulting in the cell transmission model 
[107]. Suppose the time and space domain [0, 𝑇]  × [0, 𝐿] is evenly discretized into time steps of size 
∆𝑇 indexed by 𝑛 ∈  {0, . . . , 𝑛𝑚𝑎𝑥}, and spatial cells indexed by 𝑖 ∈  {0, . . . , 𝑖𝑚𝑎𝑥} with cell length ∆𝑥. By 
the conservation of vehicles, at time step 𝑛, the traffic density 𝜌𝑛 in cell 𝑖 evolves according to the 
following equation: 

    (8) 



79 
 

where 𝑞𝑖−1/2
𝑛  represents the flow between cell 𝑖 − 1 and cell 𝑖 during time step 𝑛. The flow over the 

cell boundary is computed as the minimum flow that can be sent from the upstream cell 𝑖 − 1, and 
the flow that can be received by the downstream cell 𝑖: 

   (9) 

where 𝑆 and 𝑅 are known as the sending and receiving functions. The functions are constructed from 
the fundamental diagram as: 

  (10) 

In the present application, the system state at time 𝑛 consists of the density in each cell. The 
upstream inflow to the road 𝑞−1/2

𝑛  and the downstream outflow 𝑞𝑖𝑚𝑎𝑥+1/2
𝑛  are also modeled as state 

variables, and they are assumed to have stationary dynamics. The concatenated state vector is given 
as 𝑥𝑛 ≔ [𝜌0

𝑛, 𝜌1
𝑛, … , 𝜌𝑖𝑚𝑎𝑥

𝑛 , 𝑞−1/2
𝑛 , 𝑞𝑖𝑚𝑎𝑥+1/2

𝑛   ] ∈  ℝ𝑁×1. The forward model ℱ is constructed from 

Equations 4.10 and 4.11, and the stationary dynamic is assumed for the inflow and outflow states. 

The model noise variance selected for the density states in cells with an on-ramp or off-ramp, and the 
noise variance associated with the inflow and outflow 𝑞−1/2

𝑛 , 𝑞𝑖𝑚𝑎𝑥+1/2
𝑛  , are elevated to account for 

the larger uncertainty in the state evolution. 

Observation Equation 

The flow measurements �̃�𝑚
𝑛  and velocity measurements �̃�𝑚

𝑛  at time 𝑛 and indexed by 𝑚 are related to 
the traffic state variables as follows. The flow measurements at the boundaries are direct 
observations of the flow state variables. For example, the inflow measurement is related to the 
inflow state variable by �̃�𝑚

𝑛 = 𝑞−1/2
𝑛  for the appropriate flow measurement 𝑚. Consider a flow 

measurement 𝑚 on the interior of the road segment located at the boundary between cells 𝑖 − 1 and 
𝑖. The measurement is related to the density state variable in cell 𝑖 − 1 or cell 𝑖 depending on 
whether traffic is free flowing or congested: 

    (11) 

where 𝜖𝑚
𝑛  is the noise associated with the flow measurement. 

Velocity measurements are related to the state variables as follows. Let �̃�𝑚
𝑛  denote the velocity 

measurement at time 𝑛 at the boundary between cells 𝑖 − 1 and 𝑖. The velocity is linked to the 
density state variable in either the upstream or downstream cell depending on the traffic conditions 
as follows: 

   (12) 

where 𝜖𝑚
𝑛  is represents the noise on the velocity measurement. 
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The complete set of measurements at time 𝑛 is written as a vector: 
 

   (13) 

where 𝑀𝑞 and 𝑀𝑣 denote the number of flow and velocity measurements, respectively. The nonlinear 
observation equations (11) and (12) and the appropriate measurement error models are used to 
construct the observation equation in (4.2) in Chapter 4. 

Ensemble Kalman Filter 

The general algorithmic steps of the ensemble Kalman filtering algorithm are briefly summarized 
following [108]. The interested reader is referred to [105] for the theoretical foundation and detailed 
interpretation of the technique. Consider the discrete-time nonlinear system (Equation 4.2 in Chapter 
4). Because the observation equation is nonlinear, an augmented state approach [108] is adopted to 
linearize the observation equation. In the augmented system, the state is denoted by 𝑠𝑛 =

[(𝑥𝑛)𝑇  (ℋ(𝑥𝑛))
𝑇

]
𝑇

, which has the following observation equation: 

  (14) 
Given the augmented state s with a linear observation equation (14), the EnKF algorithm consists of 
the following steps: initialization, prediction, and correction. After the algorithm is initialized, it 

predicts the best estimate at time n with measurements through time 𝑛 − 1, denoted �̂�𝑛|𝑛−1, using 

the traffic evolution equation and the best estimate �̂�𝑛−1|𝑛−1. After measurements are received at 

time 𝑛, the predicted state �̂�𝑛|𝑛−1 is updated to �̂�𝑛|𝑛 by incorporating the new information contained 
in the measurements. The algorithm is as follows: 

 Initialize a set of state ensembles �̂�0|0(𝑘), ∀𝑘 ∈ {1, … , 𝑘𝑚𝑎𝑥} from the initial state 

distribution with covariance 𝐏0|0. 

 Predict the traffic states �̂�𝑛|𝑛−1(𝑘) for all ensembles using ℱ and ℋ where the model 
noise 𝜂𝑛(𝑘) is independently sampled for each ensemble 𝑘 from a distribution with model 
noise covariance 𝐐.  

Then the predicted state error covariance can be computed: 

   (15) 

In Equation 15, 𝐄0|0 is the state error matrix, which is computed by subtracting the estimated 

state �̂�𝑛|𝑛−1(𝑘) for each ensemble 𝑘 by the mean of estimated states �̅�𝑛|𝑛−1: 

  (16) 

where �̅�𝑛|𝑛−1 =
1

𝑘𝑚𝑎𝑥
∑ �̂�𝑛|𝑛−1(𝑘)𝑘𝑚𝑎𝑥

𝑘=1 . 

 Given the measurement data �̃�𝑛, the predicted state �̂�𝑛|𝑛−1(𝑘) for each ensemble is 
corrected by the prediction error on the output multiplied by a Kalman gain 𝐊𝑛: 
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  (17) 

where the Kalman gain is computed using the predicted state error covariance (Equation 15): 

   (18) 

The second and third steps are repeated sequentially for each time step 𝑛 until the estimated state 
over the entire time horizon is obtained. The final velocity estimate is directly computed from the 
density estimate by applying the velocity function 𝒱 to the estimated density field. 

Implementation of EnKF 

The implementation of the nonlinear Kalman filter first requires a calibration of the fundamental 
diagram (Equation 7), which captures the macroscopic traffic characteristics. 

To calibrate the fundamental diagram, a variety of traffic conditions, consist of one 2-hour free-flow 
period and three 2-hour congestion periods, were simulated in AIMSUN, where two RTMS were 
modeled to extract the velocity and flow measurements. During the calibration process, several 
lessons were learned, and the calibration of a fundamental diagram for the field implementation of 
the nonlinear Kalman filter may encounter the following difficulties: 

 The calibration requires traffic data collected in a variety of traffic conditions, particularly in 
traffic congestion. This may raise difficulty for field implementation (e.g., traffic congestion 
may occur rarely). 

 In total, 8 hours of data was collected from the micro simulation model for each work zone, 
resulting in 960 data points for the calibration of the fundamental diagram. The small quantity 
of data points resulted in inaccurate calibration of the fundamental diagram. For better 
performance of the nonlinear Kalman filtering, more data points covering all traffic densities 
are highly recommended. 

 The flow and velocity data from RTMS were used to compute the traffic density, which then 
was used to calibrate the flow density fundamental diagram. However, in traffic with a high 
percentage of trucks, the same traffic condition can generate significantly different traffic 
flows due to the different lengths of trucks and cars, causing large spread in the computed 
density. For instance, the maximum density can range from 340 veh/mile (if all vehicles 
passed were trucks) to 580 veh/mile (if all vehicles passed were cars). It is recommended to 
use the directly measured density to calibrate the flow density fundamental diagram, or use a 
longer detection cycle to mitigate such error. 

 Outliers, caused by quantization, erroneous sensor measurements, and numerical errors, in 
the dataset should be removed before the calibration of the fundamental diagram. 

Given the collected data, the parameters of the fundamental diagram were determined following the 
calibration procedure [119] except the maximum density was computed directly from the minimum 
stopping distance of vehicles. 
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The calibrated fundamental diagram for the I-80 work zone is shown in Figure C.1. The fundamental 
diagram parameters in (7) calibrated for the I-80 work zone are 𝑣𝑚𝑎𝑥 =  60.82 mph, 𝛽 =  1000 
veh/mile, 𝑤 =  −9.29 mph, and 𝜌𝑚𝑎𝑥  =  500 veh/mile. 

The calibrated fundamental diagram for the I-57 work zone is shown in Figure C.2. The fundamental 
diagram parameters in (7) calibrated for the I-57 work zone are 𝑣𝑚𝑎𝑥 =  52.71 mph, 𝛽 =
 1000 veh/mile, 𝑤 =  −10.92 mph, and 𝜌𝑚𝑎𝑥  =  500 veh/mile. 

 

Figure C.1: The calibrated fundamental diagram for the I-80 work zone.  
The free-flow traffic and congested traffic data points were plotted in  

green and black, respectively. Blue data points were considered outliers. 

 
 

Figure C.2: The calibrated fundamental diagram for the I-57 work zone. The free-flow 
traffic and congested traffic data points were plotted in green and black, respectively.  

Blue data points were considered outliers. All data points were aggregated in 30 seconds.  
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APPENDIX D: COMPLETE EVALUATION RESULTS 

Two work zones, one each on I-80 and I-57, were modeled, calibrated, and simulated in a micro 
simulation environment. This chapter presents the compete evaluation results of over 700 smart 
work zone configurations. 

D.1 I-80 WORK ZONE 

In the I-80 work zone, the evaluation results from five simulation replications were averaged to 
minimize the stochasticity in the micro simulation. For illustration, the true state of one of the 
simulation is plotted in Figure D.1. The true states of the other four replications were similar. 

An example of the velocity estimation using three algorithms with RTMS sensors deployed at 0.5 mile 
spacing is depicted in Figure D.2. The spatial interpolation simply interpolated the speed 
measurements to the entire spatial domain, hence the congestion propagated at an infinite speed 
(i.e., the congestion propagated to the adjacent sensor within a single time step). The spatio-
temporal filtering algorithm considered limited free flow and backward propagation speed of traffic, 
hence produced a smoother propagation of the congestion during the queue formation phase. The 
main reason for the less favorable transition during the queue dissipation phase was because of the 
online use of the spatio-temporal filtering algorithm which was initially designed for offline 
estimation. The nonlinear Kalman filtering algorithm integrated a traffic dynamic model with the 
sensor measurements, hence produced the smoothest velocity field estimation. The small variance of 
the velocity estimation in the free-flow area was due to the inverse computation of the velocity based 
on a fundamental diagram. 

The corresponding queue length estimation is plotted in Figure D.3. An online smoother was used to 
smooth the instantaneous increase of the queue length for the spatial interpolation algorithm. 
Consequently, the spatial interpolation produced satisfactory queue length estimation. The spatio-
temporal filtering algorithm consistently overestimated the queue length due to the assumption of 
the influence domain of each measurement. The nonlinear Kalman filter generally produced the most 
accurate estimation of the queue length. 

The typical travel time estimation example using RTMS at 0.5 mile spacing is plotted in Figure D.4. 
The spatial interpolation only considered the spatial measurements at each time step, hence 
produced the largest variance in the estimation of the travel time. The spatio-temporal produced 
smoother and better travel time estimation due to the consideration of measurements in the 
temporal dimension. The nonlinear Kalman filter in general outperformed other algorithms. It should 
be noted that, the travel time estimation for all algorithms were not satisfactory due to the use of 
instantaneous travel time computation scheme. For more accurate travel time estimation in fast 
changing traffic dynamics, a predictive model is recommended. 
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(a) True velocity field over 5 miles and 2.5 hours 

 
(b) True queue length over 2.5 hours 

 
(c) True travel time over 2.5 hours. The true travel time was not obtained in the last period because 

vehicles that entered the road after approximately 2 hours did not exit before the simulation stopped. 

Figure D.1: True state of the (a) velocity field, (b) queue length, and (c) travel time  
obtained in simulation for I-80 over 5 miles during 1530 to 1800 hours on May 1, 2015.  
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(a) 

 

(b) 

 

(c) 

Figure D.2: An example of estimated velocity field in I-80 work zone  
 using (a) spatial interpolation, (b) spatio- temporal filtering, and  

(c) nonlinear Kalman filter, with RTMS at 0.5 mile spacing. 
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(a) 

 

(b) 

 

(c) 

Figure D.3: An example of estimated queue length in I-80 work zone using (a) spatial interpolation, 
(b) spatio-temporal filtering, and (c) nonlinear Kalman filter, with RTMS at 0.5 mile  

spacing. The estimated and true queue length are plotted respectively in blue and green lines.  
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(a) 

  

(b) 

 

(c) 

Figure D.4: An example of estimated travel time in I-80 work zone using (a) spatial interpolation,  
(b) spatio-temporal filtering, and (c) nonlinear Kalman filter, with RTMS at 0.5 mile 

spacing. The estimated and true travel times are plotted respectively in blue and green lines.  
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D.1.1 Algorithms and Sensor Spacing 

This subsection summarizes how the algorithms and sensor spacing influence the estimation accuracy 
for the velocity, the queue length, and the travel time. 

The algorithms and spacing were evaluated in three scenarios, respectively using RTMS, radar, and 
LER. It was identified that, regardless of the types of sensors, (1) the nonlinear Kalman filter generally 
outperformed other algorithms in the estimation accuracy for the velocity around the queue, the 
queue length, and the travel time at sparse spacing; and (2) marginal benefits can be obtained at 
dense spacing (generally less than 10% improvement of the estimation accuracy per sensor at 1 mile 
spacing and less than 5% per sensor at 0.5 mile spacing). 

RTMS 

The estimation results when using RTMS at different combinations of algorithms and spacings are 
summarized in Figure D.5, Figure D.6, Figure D.7, and Figure D.8. The general trend clearly showed 
the performance for all algorithms improved at denser spacings. The nonlinear Kalman filtering 
algorithm consistently outperformed other algorithms in the estimation of the velocity, queue length, 
and travel time. However, the difference across different algorithms became less prominent at 
denser spacing. 

To assess the benefit of additional sensors at each spacing, the percent improvements of the 
estimation accuracy are plotted in Figure D.9, Figure D.10, Figure D.11, and Figure D.12. Overall, 
approximately, the percent improvement of the estimation accuracy per RTMS was found to be less 
than 10% after 1 mile spacing, and less than 5% after 0.5 mile spacing. 

 
 

 
 

Figure D.5: MAE of the velocity field over the entire spatio-temporal  
domain using RTMS across a range of spacings in I-80 work zone. 
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Figure D.6: MAE of the velocity field ± 0.5 mile around the queue  
using RTMS across a range of spacings in I-80 work zone. 

 
 

Figure D.7: MAE of the queue length using RTMS  
sensors across a range of spacings in I-80 work zone. 

  



90 
 

 

Figure D.8: MAE of the travel time using RTMS across a range of spacings in I-80 work zone. 

 
 

Figure D.9: The percent improvement of the estimation accuracy of the velocity field over  
the entire spatio-temporal domain per RTMS at each spacing in I-80 work zone. 
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Figure D.10: The percent improvement of the estimation accuracy of the velocity field  
at ± 0.5 mile around the queue per RTMS at each spacing in I-80 work zone. 

 

Figure D.11: The percent improvement of the estimation accuracy of  
the queue length per RTMS at each spacing in I-80 work zone. 
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Figure D.12: The percent improvement of the estimation accuracy  
of the travel time per RTMS at each spacing in I-80 work zone. 

 

Radar  

The estimation errors for the velocity, the velocity around the queue, the queue length, and the 
travel time when using radar sensors at different combinations of algorithms and spacings are 
visualized in Figure D.13, Figure D.14, Figure D.15, and Figure D.16. The findings were similar to the 
RTMS scenarios. 

 

Figure D.13: MAE of the velocity field over the entire spatio-temporal  
domain using radar sensors across a range of spacings in I-80 work zone. 
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Figure D.14: MAE of the velocity field at ± 0.5 mile around the queue  
using radar sensors across a range of spacings in I-80 work zone. 

 

Figure D.15: MAE of the queue length using radar  
sensors across a range of spacings in I-80 work zone. 
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Figure D.16: MAE of the travel time using radar  
sensors across a range of spacings in I-80 work zone. 

LER 

The estimation errors for the velocity, the velocity around the queue, the queue length, and the 
travel time when using LER sensors at different combinations of algorithms and spacings are 
visualized in Figure D.17, Figure D.18, Figure D.19, and Figure D.20. The findings were similar to the 
RTMS and radar scenarios with one exception. The advantage of using the nonlinear Kalman filter was 
found to be much less prominent compared to scenarios using RTMS and radar sensors. The main 
reason was due to the inaccurate flow measurement from LER sensors, which were critical for good 
performance of the nonlinear Kalman filter. 

 

Figure D.17: MAE of the velocity field over the entire spatio- 
temporal domain using LER sensors across a range of spacings. 
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Figure D.18: MAE of the velocity field at ± 0.5 mile around the  
queue using LER sensors across a range of spacings in I-80 work zone. 

 
 

Figure D.19: MAE of the queue length using LER  
sensors across a range of spacings in I-80 work zone. 
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Figure D.20: MAE of the travel time using LER sensors across a range of spacings in I-80 work zone. 

D.1.2 Type of Sensors 

This subsection presents two scenarios where the influence of the type of sensors is evaluated, 
respectively at 0.5 mile spacing (Figure D.21) and at 1 mile spacing (Figure D.22). 

At 0.5 Mile Spacing 

The evaluation result is shown in Figure D.21. The performance of the spatial interpolation and the 
nonlinear Kalman filter increased from LER to the IDEAL sensors due to the increasing data quality 
from sensors. In addition, the estimation accuracy when using LER, radar, and RTMS was found to be 
similar as using ideal sensors, which confirmed the one of the largest sensor measurement error 
sources was the quantization error. In addition, the nonlinear Kalman filter performed significantly 
worse when using LER compared to other three types of sensors. The main reason was the increased 
flow measurement error of LER due to its operation strategy (operates only during half of each 
detection cycle) and the occlusion issue. It should be noted that good performance of the nonlinear 
Kalman filtering using radar was based on manual adjustment of the biased flow measurement from 
radar, which could not be guaranteed in a general field deployment. Finally, the spatio-temporal 
filtering performed worst when estimating the velocity around the queue and the queue length due 
to its assumption on the influence domain of each sensor measurement. 

At 1 Mile Spacing 

The evaluation result is shown in Figure D.22. The magnitudes of the estimation error all increased 
compared to the scenario at 0.5 mile spacing. Nevertheless, the findings were similar. The good 
performance of the nonlinear Kalman filter requires accurate flow measurement data (e.g., from 
RTMS). The biased flow measurement data from radar can be adjusted based on the estimated 
percentage of occluded vehicles to achieve similar performance, which however could not be 
guaranteed in a field deployment where the percentage of occluded vehicles may vary dramatically.  
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(a) (b) 

 

(c) (d) 

Figure D.21: MAE of the (a) velocity estimation over the entire spatio-temporal domain,  
(b) velocity estimation at ± 0.5 mile around the queue, (c) queue length estimation, and  

(d) travel time estimation using different types of sensors at 0.5 mile spacing in I-80 work zone. 
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(a)        (b)  

  

(c)        (d)  

Figure D.22: MAE of the (a) velocity estimation over the entire spatio-temporal domain,  
(b) velocity estimation at ± 0.5 mile around the queue, (c) queue length estimation, and  

(d) travel time estimation using different types of sensors at 1 mile spacing in I-80 work zone. 
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D.1.3 Accuracy of Sensors 

The subsection summarizes how the accuracy of individual sensors influences the estimation results. 
In this experiment, all sensors were assumed to have been properly calibrated to remove the 
measurement bias of individual vehicles and achieve the advertised accuracy in the product 
specification. Two scenarios were presented in this subsection: RTMS at 1 mile spacing and radar at 1 
mile spacing. 

RTMS at 1 Mile Spacing 

The evaluation result is shown in Figure D.23. The improvements of the estimation accuracy for the 
velocity, queue length, and travel time were negligible. This finding indicated the quantization error 
was the dominating source of the measurement error, and the improvement of the accuracy of the 
existing RTMS could provide marginal benefits. It should be noted that the decreasing performance of 
the nonlinear Kalman filter when using improved sensors was caused by the selection of parameters 
for the Kalman filter, which was optimized for the existing RTMS. 

Radar Sensors at 1 Mile Spacing 

The evaluation result is shown in Figure D.24. The same finding for RTMS was confirmed to be valid 
also for radar sensors (i.e., improvement of the accuracy of radar sensors would provide negligible 
benefits). 

D.1.4 Cost Accuracy Analysis 

Please refer to Section 5.5 for the cost accuracy analysis. 
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(a)  (b) 

                                              
(c) (d) 

Figure D.23: MAE of the (a) velocity estimation over the entire spatio-temporal domain,  
(b) velocity estimation at ± 0.5 mile around the queue, (c) queue length estimation, and (d) travel  
time estimation using RTMS with different levels of accuracy at 1 mile spacing in I-80 work zone. 
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(a) (b) 

  

 (c) (d) 

Figure D.24: MAE of the (a) velocity estimation over the entire spatio-temporal domain, (b) velocity 
estimation at ± 0.5 mile around the queue, (c) queue length estimation, and (d) travel time 

estimation using radar sensors with different levels of accuracy at 1 mile spacing in I-80 work zone. 
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D.2 I-57 WORK ZONE 

For the I-57 work zone, only one replication was simulated for each sensor network configuration and 
traffic estimation algorithm since it was found the stochasticity in the micro simulation was negligible 
during the analysis for the I-80 work zone. For illustration, the true state is plotted in Figure D.25. The 
simulation successfully captured the formation of the congestion. However, the significantly amount 
of missing data as discussed in Section 3.2 caused challenges for a proper calibration of the micro 
simulation model. In addition, there lacked sufficient information in the work zone to justify the use 
of random fluctuating inflows to create a dissipation phase of the congestion. Therefore, the focus of 
the calibration was to capture the formation of the congestion (i.e., the backward propagation of the 
congestion). 

An example of the velocity estimation using three algorithms with RTMS deployed at 0.5 mile spacing 
is depicted in Figure D.26. The periods of free-flow velocity estimates in the congested area showed 
the spatial interpolation was sensitive to missing data. The nonlinear Kalman filter algorithm 
produced unsatisfactory velocity estimation in the free-flow area, which again was due to the 
inaccurate fundamental diagram. 

The corresponding queue length estimation is plotted in Figure D.27. The spatio-temporal filtering 
algorithm consistently overestimated the queue length due to the assumption of the influence 
domain of each measurement. 

The typical travel time estimation for this example using RTMS at 0.5 mile spacing is plotted in Figure 
D.28. Both the spatial interpolation and the nonlinear Kalman filter underestimated the travel time 
due to the use of the instantaneous travel time computation scheme, which failed to capture the fast 
propagating congestion. Though the spatio-temporal filtering algorithm consistently overestimated 
the queue length, it produced the best travel time estimation. 
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(a) True velocity field over 4 miles and 2.5 hourS 

 

(b) True queue length over 2.5 hours 

 

(c) True travel time over 2.5 hours; the true travel time was not obtained in the last period because 
vehicles that entered the road after approximately 2 hours did not exit before the simulation stopped 

Figure D.25: True state of the (a) velocity field, (b) queue length, and (c) travel time obtained in 
simulation for the I-57 work zone over 4 miles during 1530 to 1800 hours on November 26, 2014.  
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(a) 

 

(b) 

 

(c) 

Figure D.26: An example of estimated velocity field using (a) spatial interpolation, (b) spatio-temporal 
filtering, and (c) nonlinear Kalman filter, with RTMS at 0.5 mile spacing in the I-57 work zone. 
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(a) 
 

(b) 

 

(c) 

Figure D.27: An example of estimated queue length using (a) spatial interpolation, (b) spatio- 
temporal filtering, and (c) nonlinear Kalman filter, with RTMS at 0.5 mile spacing in I-57 work zone. 

The estimated and true queue lengths are plotted respectively in blue and green lines.  
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(a) 

 

(b) 

 

(c) 

Figure D.28: An example of estimated travel time using (a) spatial interpolation, (b) spatio- 
temporal filtering, and (c) nonlinear Kalman filter, with RTMS at 0.5 mile spacing in the I-57 work 

zone. The estimated and true travel times are plotted respectively in blue and green lines.  
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D.2.1 Algorithms and Sensor Spacing 

The algorithms and spacing were evaluated in three scenarios in the I-57 work zone, respectively 
using RTMS, radar, and LER. The findings in I-80 work zone were confirmed. 

RTMS 

The estimation results when using RTMS at different combinations of algorithms and spacings in I-57 
are summarized in Figure D.29, Figure D.30, Figure D.31, and Figure D.32. The velocity estimation 
error for the nonlinear Kalman filter was significantly higher than using other algorithms for most of 
the spacings. The main reason was the large estimation error in the free-flow area as illustrated in 
Figure D.25a. Due to the inaccurate fundamental diagram calibrated for the I-57, the nonlinear 
Kalman filter showed less advantages on the estimation accuracy compared to other algorithms. 

 

 
 

Figure D.29: MAE of the velocity field over the entire spatio-temporal  
domain using RTMS across a range of spacings in the I-57 work zone. 
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Figure D.30: MAE of the velocity field ± 0.5 mile around the queue 
using RTMS across a range of spacings in I-57 work zone. 

 
 

Figure D.31: MAE of the queue length using RTMS across a range of spacings in I-57 work zone. 

 

 

  



109 
 

 
 

Figure D.32: MAE of the travel time using RTMS across a range of spacings in I-57 work zone. 

Radar Sensors 

The estimation results when using radar sensors at different combinations of algorithms and spacings 
in I-57 are visualized in Figure D.33, Figure D.34, Figure D.35, and Figure D.36. The findings were 
similar to the RTMS scenarios. 

 

 

Figure D.33: MAE of the velocity field over the entire spatio-temporal  
domain using radar sensors across a range of spacings in the I-57 work zone. 

  



110 
 

 
 

Figure D.34: MAE of the velocity field ± 0.5 mile around the queue  
using radar sensors across a range of spacings in the I-57 work zone. 

 
 

Figure D.35: MAE of the queue length using radar  
sensors across a range of spacings in the I-57 work zone. 
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Figure D.36: MAE of the travel time using radar  
sensors across a range of spacings in the I-57 work zone. 

LER Sensors 

The estimation results when using LER sensors at different combinations of algorithms and spacings 
in the I-57 work zone are visualized in Figure D.37, Figure D.38, Figure D.39, and Figure D.40. The 
increased flow measurement error from LER sensors further degraded the performance of the 
nonlinear Kalman filter algorithm. 

 

 

Figure D.37: MAE of the velocity field over the entire spatio-temporal  
domain using LER sensors across a range of spacings in the I-57 work zone. 
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Figure D.38: MAE of the velocity field ± 0.5 mile around the queue  
using LER sensors across a range of spacings in the I-57 work zone. 

 

 
 

Figure D.39: MAE of the queue length using LER  
sensors across a range of spacings in the I-57 work zone. 
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Figure D.40: MAE of the travel time using LER  
sensors across a range of spacings in the I-57 work zone. 

D.2.2 Type of Sensors 

This subsection presents two scenarios where the influence of the type of sensors was evaluated, 
respectively at 0.5 mile spacing (Figure D.41) and at 1 mile spacing (Figure D.42). 

At 0.5 Mile Spacing 

The evaluation result is shown in Figure D.41. The findings from I-80 were confirmed. 

At 1 Mile Spacing 

The evaluation result is shown in Figure D.42. The findings from I-80 were confirmed. 

 

 

 

 

 

 

 

 

  



114 
 

  
                         (a)                      (b)  
 

  

(c) (d) 

Figure D.41: MAE of the (a) velocity estimation over the entire spatio-temporal domain,  
(b) velocity estimation at ± 0.5 mile around the queue, (c) queue length estimation, and  

(d) travel time estimation using different types of sensors at 0.5 mile spacing in I-57 work zone. 
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(a) (b) 

  

(c) (d) 

Figure D.42: MAE of the (a) velocity estimation over the entire spatio-temporal domain,  
(b) velocity estimation at ± 0.5 mile around the queue, (c) queue length estimation, and  

(d) travel time estimation using different types of sensors at 1 mile spacing in I-57 work zone. 

D.2.3 Accuracy of Sensors 

The subsection summarizes how the accuracy of individual sensors influences the estimation accuracy 
in the I-57 work zone. In this experiment, all sensors were assumed to have been properly calibrated 
to remove the measurement bias of individual vehicles and achieve the advertised accuracy in the 
product specification. In this analysis, RTMS with different levels of accuracy were placed at 1 mile 
spacing. 

The evaluation result is shown in Figure D.43. The same finding in I-80 was confirmed (i.e., 
improvement of the accuracy of radar sensors would provide negligible benefits). 
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D.2.4 Cost Accuracy Analysis 

Please refer to Section 5.5 for the methodology of the cost accuracy analysis. The cost accuracy 
analysis for the I-57 work zone is plotted in Figure D.44, Figure D.45, Figure D.46, and Figure D.47. 
Due to the inaccurate fundamental diagram calibration, the nonlinear Kalman filter did not show 
compelling evidence to be more cost effective compared to the simple spatial interpolation 
algorithm. 

 

 

(a) (b) 

  

 (c) (d) 

Figure D.43: MAE of the (a) velocity estimation over the entire spatio-temporal domain,  
(b) velocity estimation at ± 0.5 mile around the queue, (c) queue length estimation, and (d) travel time 

estimation using RTMS with different levels of accuracy at 1 mile spacing in the I-57 work zone. 
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Figure D.44: Cost accuracy for the velocity estimation  
over the entire spatio-temporal domain in the I-57 work zone. 

 
 

Figure D.45: Cost accuracy for the velocity estimation  
± 0.5 mile around the queue in the I-57 work zone. 
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Figure D.46: Cost accuracy for the queue length estimation in the I-57 work zone. 

 

 
 

 

Figure D.47: Cost accuracy for the travel time estimation in the I-57 work zone. 
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